Opendata, web and dolomites

OCPSTRUCTDYNAMICS SIGNED

Structural dynamics essential for photosynthetic adaptation and survival of cyanobacteria in fluctuating light intensities

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OCPSTRUCTDYNAMICS project word cloud

Explore the words cloud of the OCPSTRUCTDYNAMICS project. It provides you a very rough idea of what is the project "OCPSTRUCTDYNAMICS" about.

interactions    mechanism    energy    optogenetics    heat    photoactivation    activation    cyanobacterial    artificial    combined    absorption    suggested    damage    dissipation    identification    questions    biofuel    absorbed    fluctuations    excess    photochemical    like    photo    dissociation    roles    raised    flow    ultrafast    intensity    causing    unravelled    crystals    demonstrating    occurs    photosynthesis    light    6803    first    polarised    oriented    dependent    harvesting    machinery    vulnerable    photoprotection    date    proteins    kinetics    describe    paralogs    domains    ranging    photoenergy    performed    slr1963    gene    ocp    orange    spectroscopic    exact    resolve    dynamics    structural    genomes    npq    transient    themselves    synechocystis    photosynthetic    resolved    photoprotective    ocp2    spectroscopy    triggered    encoded    transitions    ocpx    differences    protein    terminal    quenching    mechanisms    isolated    structure    allowed    organisms    carotenoid    diffraction    movement    time    cyanobacteria    protect    additional    subfamilies    single    ocp1    ray    crystallography   

Project "OCPSTRUCTDYNAMICS" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-08   to  2022-01-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 212˙933.00

Map

 Project objective

Like most photosynthetic organisms, cyanobacteria are vulnerable to fluctuations in light intensity, which can damage their photosynthetic machinery. To protect themselves against such fluctuations, they use a photoprotective mechanism called non-photochemical quenching (NPQ), i.e. the dissipation of excess absorbed photo-energy as heat. NPQ in cyanobacteria is triggered by orange carotenoid protein (OCP) light activation. Based on spectroscopic and diffraction studies of OCP in Synechocystis 6803 (gene slr1963), it was suggested that OCP light activation occurs through light-induced movement of a carotenoid causing movement and/or dissociation of OCP N- and C-terminal domains. However, the exact structural dynamics of OCP light-activation need to be unravelled. Furthermore, the growing availability of cyanobacterial genomes allowed identification of additional OCP subfamilies (OCP2, OCPX) in different cyanobacteria. The first results demonstrating different kinetics of light-activation in the different OCP paralogs raised questions about differences in their photoprotective roles and in photoactivation mechanisms. This topic has not been studied to date. Here I propose to resolve structural changes during photoprotection-related transitions of OCP in different OCP subfamilies using time-resolved X-ray crystallography. X-ray crystallography of OCP1 encoded by slr1963, the best-characterized OCP protein, as well as its paralogs from the OCP2 and OCPX subfamilies will be performed. This approach will be combined with ultrafast transient (polarised) absorption spectroscopy on isolated proteins and oriented single crystals to describe the structure-dependent flow of photoenergy in the proteins. This study has several potential applications ranging from enhancing cyanobacterial light harvesting to improve biofuel production, to better understanding of carotenoid-protein interactions in artificial photosynthesis systems, and for optogenetics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OCPSTRUCTDYNAMICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OCPSTRUCTDYNAMICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Migration Ethics (2019)

Migration Ethics

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More