Opendata, web and dolomites

OCPSTRUCTDYNAMICS SIGNED

Structural dynamics essential for photosynthetic adaptation and survival of cyanobacteria in fluctuating light intensities

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 OCPSTRUCTDYNAMICS project word cloud

Explore the words cloud of the OCPSTRUCTDYNAMICS project. It provides you a very rough idea of what is the project "OCPSTRUCTDYNAMICS" about.

vulnerable    organisms    carotenoid    like    photosynthetic    ranging    photoprotective    damage    crystallography    protect    photo    dissociation    interactions    time    unravelled    photoprotection    demonstrating    additional    questions    exact    npq    dissipation    combined    photoactivation    optogenetics    resolved    encoded    photoenergy    ocp2    excess    energy    harvesting    transient    raised    photosynthesis    slr1963    suggested    single    identification    artificial    orange    biofuel    6803    allowed    genomes    dynamics    light    first    cyanobacteria    intensity    date    themselves    proteins    kinetics    photochemical    ocpx    fluctuations    domains    ocp1    occurs    absorbed    structural    subfamilies    gene    ocp    dependent    roles    oriented    describe    ultrafast    causing    spectroscopic    performed    transitions    crystals    mechanism    spectroscopy    synechocystis    quenching    isolated    triggered    polarised    cyanobacterial    absorption    mechanisms    paralogs    activation    terminal    resolve    flow    machinery    protein    heat    movement    structure    differences    diffraction    ray   

Project "OCPSTRUCTDYNAMICS" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-08   to  2022-01-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 212˙933.00

Map

 Project objective

Like most photosynthetic organisms, cyanobacteria are vulnerable to fluctuations in light intensity, which can damage their photosynthetic machinery. To protect themselves against such fluctuations, they use a photoprotective mechanism called non-photochemical quenching (NPQ), i.e. the dissipation of excess absorbed photo-energy as heat. NPQ in cyanobacteria is triggered by orange carotenoid protein (OCP) light activation. Based on spectroscopic and diffraction studies of OCP in Synechocystis 6803 (gene slr1963), it was suggested that OCP light activation occurs through light-induced movement of a carotenoid causing movement and/or dissociation of OCP N- and C-terminal domains. However, the exact structural dynamics of OCP light-activation need to be unravelled. Furthermore, the growing availability of cyanobacterial genomes allowed identification of additional OCP subfamilies (OCP2, OCPX) in different cyanobacteria. The first results demonstrating different kinetics of light-activation in the different OCP paralogs raised questions about differences in their photoprotective roles and in photoactivation mechanisms. This topic has not been studied to date. Here I propose to resolve structural changes during photoprotection-related transitions of OCP in different OCP subfamilies using time-resolved X-ray crystallography. X-ray crystallography of OCP1 encoded by slr1963, the best-characterized OCP protein, as well as its paralogs from the OCP2 and OCPX subfamilies will be performed. This approach will be combined with ultrafast transient (polarised) absorption spectroscopy on isolated proteins and oriented single crystals to describe the structure-dependent flow of photoenergy in the proteins. This study has several potential applications ranging from enhancing cyanobacterial light harvesting to improve biofuel production, to better understanding of carotenoid-protein interactions in artificial photosynthesis systems, and for optogenetics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OCPSTRUCTDYNAMICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OCPSTRUCTDYNAMICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More