Explore the words cloud of the CausalBoost project. It provides you a very rough idea of what is the project "CausalBoost" about.
The following table provides information about the project.
Coordinator |
THE UNIVERSITY OF READING
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 212˙933 € |
EC max contribution | 212˙933 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2020 |
Duration (year-month-day) | from 2020-03-01 to 2022-02-28 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE UNIVERSITY OF READING | UK (READING) | coordinator | 212˙933.00 |
The Mediterranean region (MED) is a hotspot of anthropogenic climate change and impacts are probably already felt today; recent heatwaves and persistent droughts have led to crop failures, wild fires and water shortages, causing large economic losses. Climate models robustly project further warming and drying of the region, putting it at risk of desertification. The particular vulnerability of this water-limited region to climatic changes has created an urgent need for reliable forecasts of rainfall on subseasonal to seasonal (S2S) timescales, i.e. 2 weeks up to a season ahead. This S2S time-range is particularly crucial, as the prediction lead time is long enough to implement adaptation measures, and short enough to be of immediate relevance for decision makers. However, predictions on lead-times beyond approximately 10 days fall into the so-called “weather-climate prediction gap”, with operational forecast models only providing marginal skill. The reasons for this are a range of fundamental challenges, including a limited causal understanding of the underlying sources of predictability. The proposed research effort aims to improve S2S forecasts of MED rainfall by taking an innovative, interdisciplinary approach that combines novel causal discovery algorithms from complex system science with operational forecast models. This will overcome current limitations of conventional statistical methods to identify relevant sources of predictability and to evaluate modelled teleconnection processes. The outcomes of this project will (i) identify key S2S drivers of MED rainfall, (ii) systematically evaluate them in forecast models, (iii) derive process-based bias corrections to (iv) boost forecast skill. My strong background in both causal inference techniques and atmospheric dynamics puts me in a unique position to lead this innovative effort and to achieve real progress in reducing the “weather-climate prediction gap” for the MED region.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CAUSALBOOST" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "CAUSALBOOST" are provided by the European Opendata Portal: CORDIS opendata.