Opendata, web and dolomites

MetD-AO SIGNED

Methyl Donating artificial organelles to support liver cells in Non-alcoholic fatty liver disease

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MetD-AO project word cloud

Explore the words cloud of the MetD-AO project. It provides you a very rough idea of what is the project "MetD-AO" about.

lysosome    spectrum    science    liver    biosynthesis    trained    conduction    biology    membranolytic    host    cell    homeostasis    world    sized    copolymers    vitro    destroyed    amphiphilic    encapsulated    medical    organelles    assemble    oxygen    poly    outcome    synth    damage    cellular    encompassing    cytosol    dr    disease    few    complementary    intact    donating    reactive    prior    gaining    successful    nonalcoholic    therapeutic    artificial    methacrylate    structurally    started    failing    carrier    lysosomal    consisting    preserving    colloidal    perform    reported    cholesterol    cargo    latter    nafld    prospects    escape    nanoparticles    polymer    expertise    chemist    function    hydrophilic    characterization    nano    tail    intracellular    enzyme    methyl    protein    ao    mimicking    respectively    career    lost    deficiencies    compartment    self    adenosylmethionine    hepatocytes    substitute    entirely    reactors    synthetase    multiple    single    biocatalytic    carboxypentyl    western    missing    functional    chronic    employing    acrylate    assembly    release    reaction    aos    metd    pharmaceutical    organic    stadler    me    fatty   

Project "MetD-AO" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 219˙312 €
 EC max contribution 219˙312 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 219˙312.00

Map

 Project objective

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, encompassing a spectrum of liver damage. Multiple issues are involved on the cellular level in failing liver often including enzyme deficiencies such as reduced biosynthesis of S-adenosylmethionine (SAMe). Preserving SAMe homeostasis has only recently started to be considered as a potential therapeutic target in liver-related medical conditions. However, employing the required enzyme, SAMe synthetase (SAMe-synth), as a pharmaceutical, is challenging due to the general issues involved in intact (functional) protein delivery. The aim of the MetD-AO project is to assemble organic SAMe-synth activity mimicking polymer nanoparticles as artificial organelles (AO) and their in vitro characterization of intracellular function in hepatocytes. AOs are typically nano-sized single compartment reactors, aimed to perform a specific encapsulated biocatalytic reaction within a cell to substitute for missing or lost function. The AO will be based on amphiphilic copolymers consisting of a methyl-donating unit, cholesterol methacrylate and poly(5-carboxypentyl acrylate) as membranolytic hydrophilic tail. The latter two will aim at facilitating self-assembly and lysosomal escape, respectively. To allow structurally intact AO to escape the lysosome is unique since typically, the carrier is destroyed and only the therapeutic cargo is release into the cytosol. The proposed AOs with methyl-donating ability are highly advanced because the few prior reported AOs with intracellular activity all considered reactive oxygen related aspects at best. The successful outcome of MetD-AO has the potential to open up entirely new therapeutic opportunities in NAFLD. The complementary expertise of my host Dr. Stadler and me, a trained polymer chemist, will ensure a successful conduction of MetD-AO while it will enhance my future career prospects gaining experience in colloidal science and cell biology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "METD-AO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "METD-AO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

Migration Ethics (2019)

Migration Ethics

Read More