Explore the words cloud of the MetD-AO project. It provides you a very rough idea of what is the project "MetD-AO" about.
The following table provides information about the project.
Coordinator |
AARHUS UNIVERSITET
Organization address contact info |
Coordinator Country | Denmark [DK] |
Total cost | 219˙312 € |
EC max contribution | 219˙312 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2019 |
Duration (year-month-day) | from 2019-09-01 to 2021-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | AARHUS UNIVERSITET | DK (AARHUS C) | coordinator | 219˙312.00 |
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, encompassing a spectrum of liver damage. Multiple issues are involved on the cellular level in failing liver often including enzyme deficiencies such as reduced biosynthesis of S-adenosylmethionine (SAMe). Preserving SAMe homeostasis has only recently started to be considered as a potential therapeutic target in liver-related medical conditions. However, employing the required enzyme, SAMe synthetase (SAMe-synth), as a pharmaceutical, is challenging due to the general issues involved in intact (functional) protein delivery. The aim of the MetD-AO project is to assemble organic SAMe-synth activity mimicking polymer nanoparticles as artificial organelles (AO) and their in vitro characterization of intracellular function in hepatocytes. AOs are typically nano-sized single compartment reactors, aimed to perform a specific encapsulated biocatalytic reaction within a cell to substitute for missing or lost function. The AO will be based on amphiphilic copolymers consisting of a methyl-donating unit, cholesterol methacrylate and poly(5-carboxypentyl acrylate) as membranolytic hydrophilic tail. The latter two will aim at facilitating self-assembly and lysosomal escape, respectively. To allow structurally intact AO to escape the lysosome is unique since typically, the carrier is destroyed and only the therapeutic cargo is release into the cytosol. The proposed AOs with methyl-donating ability are highly advanced because the few prior reported AOs with intracellular activity all considered reactive oxygen related aspects at best. The successful outcome of MetD-AO has the potential to open up entirely new therapeutic opportunities in NAFLD. The complementary expertise of my host Dr. Stadler and me, a trained polymer chemist, will ensure a successful conduction of MetD-AO while it will enhance my future career prospects gaining experience in colloidal science and cell biology.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "METD-AO" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "METD-AO" are provided by the European Opendata Portal: CORDIS opendata.