Explore the words cloud of the SmartSorp project. It provides you a very rough idea of what is the project "SmartSorp" about.
The following table provides information about the project.
Coordinator |
EIDGENOSSISCHE MATERIALPRUFUNGS- UND FORSCHUNGSANSTALT
Organization address contact info |
Coordinator Country | Switzerland [CH] |
Total cost | 191˙149 € |
EC max contribution | 191˙149 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2019 |
Duration (year-month-day) | from 2019-09-01 to 2021-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | EIDGENOSSISCHE MATERIALPRUFUNGS- UND FORSCHUNGSANSTALT | CH (DUBENDORF) | coordinator | 191˙149.00 |
The aim of this project is to develop a novel ceramic hollow fiber adsorption system for high throughput, energy efficient separation and purification of gases/ vapours. Current adsorption technologies are grossly energy inefficient due to waste heat generation and long regeneration times. Therefore, it is important to develop new energy efficient, smart functional materials in order to meet society’s future energy demands. Functional hollow fibers with smart characteristics (such as self-regulated heating and regeneration of the adsorbent bed) have the potential to meet these challenges, and compact systems could be formed that also exhibit low pressure drop, no adsorbent bed settling and channelling, and have a low thermal mass for rapid regeneration of the adsorbent layer. The novel hollow fiber will consist of a thin film zeolite inner layer for adsorption of target species, while the outer layer is formed from a perovskite-type Lanthanum doped BaTiO3 ceramic with positive temperature coefficient of resistance (PTCR) characteristics. The PTCR layer provides inherent temperature control, imparting self-regulating and self-limited Ohmic (Joule) heating with thermal energy directed onto the inner adsorbent layer in order to regenerate the system for the next process cycle. This is a highly multidisciplinary project encompassing the formation of electro-ceramic hollow fibers from wet spinning techniques, zeolite deposition chemistry, and industrial engineering. The MSC-IF researcher will work within the Swiss Federal Institute for Materials Research (EMPA) in the High Performance Ceramics Group, where he will develop expertise in ceramic processing and extrusion. A prototype ceramic hollow fiber, gas purification system will be developed and benchmarked against conventional packed-bed technology, during a secondment phase to NanoPurification Solutions Ltd (UK), a manufacturer of industrial gas separation technology.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SMARTSORP" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SMARTSORP" are provided by the European Opendata Portal: CORDIS opendata.