Opendata, web and dolomites

BACTEPEA SIGNED

Unraveling the molecular dialogue in microbial-assisted plant growth in the presence of heavy metals

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "BACTEPEA" data sheet

The following table provides information about the project.

Coordinator
NEIKER-INSTITUTO VASCO DE INVESTIGACION Y DESARROLLO AGRARIO SA 

Organization address
address: BERREAGA KALEA 1
city: VIZCAYA
postcode: 48160
website: www.neiker.net

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 172˙932 €
 EC max contribution 172˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-05-01   to  2022-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    NEIKER-INSTITUTO VASCO DE INVESTIGACION Y DESARROLLO AGRARIO SA ES (VIZCAYA) coordinator 172˙932.00

Map

 Project objective

Agriculture is currently confronting (i) an increasing human population and (ii) limitations of soil use due to, among other reasons, pollution levels above food safety threshold values. Some agricultural practices increase the heavy metal content (HM) of agricultural soil, representing an important threat for the European agricultural development. The use of microorganisms as plant growth promoters has been increasingly studied for a number of years, but it has only recently been proposed to improve plant metal tolerance. Regrettably, plant-microorganism-pollutant interactions are still poorly understood and the molecular underlying mechanisms are mostly unknown. The abovementioned challenges for agricultural production require the study of these mechanisms to better promote a more efficient and sustainable agriculture. This project will venture into new unchartered territory by focusing on the molecular interactions between a probiotic actinobacterium (Micromonospora cremea) and its host, Pisum sativum (garden pea), in the presence of HMs. We will evaluate the capacity of M. cremea CR30 to improve plant tolerance to HM polluted soils, in addition to unraveling the molecular dialogue during the first and late steps of their interaction. Early step interactions are crucial in plant promotion and protection against external stresses, like pollution by HM. Here, we propose the use of new -omic technologies to study these molecular interactions between plants and microorganisms under metal stress, providing a new pathway for an improved soil management. This project addresses a crucial objective in food security, the development of sustainable agricultural practices to control potentially adverse HM effects on plant health.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BACTEPEA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BACTEPEA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ORIGIN (2019)

Origin: reconstructing African prehistory using ancient DNA

Read More  

QoSIoTSmartCities (2019)

Quality of Service for the Internet of Things in Smart Cities via Predictive Networks

Read More  

BRCAstem (2020)

Monitoring cancer stem cell dynamics and therapeutic response in BRCA2-deficient breast tumour cells

Read More