Opendata, web and dolomites

TENDO SIGNED

Tension of ENDOmembranes maintained by TORC1

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TENDO project word cloud

Explore the words cloud of the TENDO project. It provides you a very rough idea of what is the project "TENDO" about.

frap    structure    transferable    imaging    versa    coupling    lessons    inform    synthesis    details    chemical    depletion    toroid    biomass    homeostasis    screens    bound    tools    overcame    insensitive    cues    vacuolar    named    assembly    molecules    inactive    ask    learned    huge    regulates    mechanotransduction    interventions    pm    concurrently    discovery    domain    reveal    functions    protein    vice    senses    helix    membrane    compound    signalling    confirmed    tension    glucose    phosphoproteomics    serves    ser    genetic    revealed    complexes    vm    tor    em    forms    turnover    lack    biosensor    prompted    torc2    suite    inhibitor    human    macrolide    dissipates    small    sensitive    torc1    plays    probes    biology    regarding    bacterial    monitor    nutrient    vitro    cryo    enabled    throughput    conserved    therapeutic    assays    yeast    solving    regulated    mechanisms    assembles    rapamycin    create    thr    grant    made    storm    plasma    quantitative    inhibited    variant    central    regulation    medically    kinase   

Project "TENDO" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE GENEVE 

Organization address
address: RUE DU GENERAL DUFOUR 24
city: GENEVE
postcode: 1211
website: www.unige.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 2˙257˙546 €
 EC max contribution 2˙257˙546 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2024-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE GENEVE CH (GENEVE) coordinator 2˙257˙546.00

Map

 Project objective

The target of the bacterial macrolide rapamycin, TOR, is a ser/thr protein kinase that assembles into two distinct protein complexes, conserved from yeast to human, we named TORC1 and TORC2. TORC1 is directly bound and inhibited by rapamycin and studies with rapamycin have revealed that TORC1 plays a central role in coupling nutrient cues to biomass synthesis and turnover. The lack of a specific inhibitor for TORC2 has made the study of this complex much more challenging. We overcame this challenge by solving the structure of yeast TORC2 which revealed why it is insensitive to rapamycin and enabled us to create a rapamycin-sensitive TORC2 variant. We also developed two small molecules, one that dissipates plasma membrane (PM) tension and the other that serves as a biosensor of PM tension. With this suite of chemical-biology tools we confirmed that TORC2 functions in a mechanotransduction pathway to maintain tension homeostasis of the PM. Concurrently, solving the structure of TORC1 revealed that its activity is regulated via assembly into a huge, inactive helix which we named a TOROID – TORC1 Organized in an Inactive Domain. In this grant, was ask if these major advances are transferable; i.e. can lessons learned regarding TORC2 be applied to TORC1, and vice versa? Our major aim is to determine if and how TORC1 regulates vacuolar membrane (VM) tension. To this end, we will develop novel chemical probes to monitor VM tension and we will use genetic screens, quantitative phosphoproteomics, in vitro assays, high-throughput compound screens, STORM and FRAP imaging, and state-of-the-art cryo-EM to learn how TORC1 senses and regulates VM tension. Our other aim, prompted by our TOROID discovery, is to solve the TOROID-like structure that TORC2 forms upon glucose depletion. This work will reveal new mechanisms in growth control, and details in TORC1 and TORC2 regulation that may inform future therapeutic interventions for these medically relevant signalling complexes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TENDO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TENDO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

TechChild (2019)

Just because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life

Read More