Opendata, web and dolomites

CROWDY SIGNED

Toward the microscopic simulations of cell-like environments.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CROWDY" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 196˙707 €
 EC max contribution 196˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 196˙707.00

Map

 Project objective

In living cells, proteins operate in an extremely crowded environment, which has a substantial impact on their structural and dynamical properties. Taking into account the effects of macromolecular crowding is thus imperative for a full understanding of protein function in vivo. However, despite a growing interest in the characterization of in-cell crowding, its net effect remains only partially understood as experimental studies addressing such phenomena in the cytoplasm are very challenging. In this project, we aim to examine the effect of macromolecular crowding on protein mobility and stability at the microscopic resolution. To this end, we will deploy a novel multi-scale simulation approach developed in the host laboratory. This multi-scale framework combines a detailed description of proteins with an efficient lattice-based model of solvent hydrodynamics. In the course of the project, we will consider systems of progressive complexity, ranging from crowded binary protein suspensions through a model of a bacterial cytoplasm and a lipid vesicle forming a biological nanoreactor. Our computational studies will be performed in close contact with two top-level experimental groups active in the field. We will pay particular attention to the behavior of superoxide dismutase 1, a protein involved in amyotrophic lateral sclerosis. Our multi-scale molecular simulations will shed light on how protein dynamics and stability are locally affected by the heterogeneity of the cellular environment. Moreover, we will investigate how crowding is modulated by the presence of membrane surfaces. The simulations will allow us to clarify the origins of crowding effects at an atomistic level, which will provide a vital support for the microscopic interpretation of experimental data. Thus, our project will offer unprecedented insights into the structure and dynamics of the crowded environment inside living cells.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CROWDY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CROWDY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More  

TRACE-AD (2019)

Tracking the Effects of Amyloid and Tau Pathology on Brain Systems and Cognition in Early Alzheimer’s Disease

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More