Opendata, web and dolomites

LEANOR SIGNED

Detecting Low-Energy Astrophysical Neutrinos with KM3NeT/ORCA: the Transient Neutrino Sky at the GeV Scale

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "LEANOR" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE PARIS DIDEROT - PARIS 7 

There are not information about this coordinator. Please contact Fabio for more information, thanks.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-10-08   to  2021-10-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE PARIS FR (PARIS) coordinator 184˙707.00
2    UNIVERSITE PARIS DIDEROT - PARIS 7 FR (PARIS) coordinator 0.00

Map

 Project objective

'The era of Multi-Messenger (MM) astronomy has started with the joint observations of gravitational and electromagnetic waves in August 2017, and the announcement of a common source of high-energy neutrinos and gamma rays in July 2018. The 'Low-Energy Astrophysical Neutrinos in ORca' (LEANOR) project aspires to be the next MM observation, coupling low-energy (GeV) neutrinos with electromagnetic and gravitational waves emitted during short gamma-ray bursts (SGRBs). While the signal/background differentiation is more challenging for low energy neutrinos, they have the advantage to be more abundant than their high-energy counterpart. Produced as a consequence of the accelerated proton flux colliding with the matter surrounding the source, they stand as promising messengers to constrain the local environment and would furthermore be of great help to identify new cosmic sources. To reach this goal, we propose to convert the KM3NeT-ORCA detector, initially designed for neutrino oscillation studies, into a telescope able to study astrophysical GeV neutrinos. A detailed study of the environmental noise will be coupled to a specific selection of ORCA data targeting GeV neutrino interactions. The data sample acquired will then be used to search for statistically significant excess of neutrinos during SGRBs. Three different analyses, based on electromagnetic or gravitational wave observations, will be developed. These analyses will allow to constrain the source environment as well as the hadronic acceleration process taking place in SGRBs. The project will lead to either the first joint observation of GeV neutrinos, electromagnetic and gravitational waves, or the first observational limits set in this energy range for the studied source population. Opening a new line of research in ORCA, LEANOR will also provide the KM3NeT collaboration with new tools to develop a variety of searches for low energy neutrinos emitted during transient events, such as Novae or Fast radio bursts.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LEANOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LEANOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ActinSensor (2019)

Identification and characterization of a novel damage sensor for cytoskeletal proteins in Drosophila

Read More  

EXPAND (2019)

Examining pan-neotropical diasporas

Read More  

ToMComputations (2019)

How other minds are represented in the human brain: Neural computations underlying Theory of Mind

Read More