Opendata, web and dolomites

PLANTGROWTH SIGNED

Exploiting genome replication to design improved plant growth strategies

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PLANTGROWTH" data sheet

The following table provides information about the project.

Coordinator
AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS 

Organization address
address: CALLE SERRANO 117
city: MADRID
postcode: 28006
website: http://www.csic.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 2˙497˙800 €
 EC max contribution 2˙497˙800 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2024-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS ES (MADRID) coordinator 2˙497˙800.00

Map

 Project objective

This project will identify the principles governing genome replication in relation to the chromatin landscape and how they impact on plant organ growth. The results will provide the basis to design novel strategies to improve plant growth performance.

The large plant genomes, as in all eukaryotes, must be faithfully duplicated every cell cycle, a process regulated at the level of DNA replication origins (ORIs). Our understanding of how ORIs are determined is still very limited. Most of our knowledge comes from cultured cells, precluding the identification of regulatory layers operating at the organism level. Importantly, genome replication can offer unexplored possibilities to modulate plant architecture and growth and, consequently, plant performance.

Results generated so far unable us to address a fundamental question: what are the regulatory mechanisms of DNA and genome replication and how they can be exploited to design improved plant growth strategies. This innovative perspective will reveal how genome replication is regulated by DNA sequence context, replication factors and chromatin landscape. Integration of molecular, cellular, genomic and genetic approaches in a whole organism will serve to evaluate the phenotypic effects of modulating genome replication on organ growth. We will also learn how DNA replication control is exerted during endoreplication and in coordination with transcriptional programs, both crucial for plant organogenesis, growth and response to environmental stresses.

This program goes beyond incremental research, is timely, innovative, ambitious but realistic, and high risk/high gain, combining different approaches to address a fundamental process. Given the conservation of proteins and pathways, and the availability of well-annotated genomic information for many plant species, PLANTGROWTH will pave the way to translate the technological and conceptual know-how derived from this program to crop species to improve yield.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PLANTGROWTH" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PLANTGROWTH" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HYDROGEN (2019)

HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration

Read More  

REPLAY_DMN (2019)

A theory of global memory systems

Read More  

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More