Opendata, web and dolomites

mRNAstress SIGNED

Investigating the molecular mechanisms of translational reprogramming during cellular stress

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "mRNAstress" data sheet

The following table provides information about the project.

Coordinator
FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION 

Organization address
address: MAULBEERSTRASSE 66
city: BASEL
postcode: 4058
website: www.fmi.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-08-01   to  2022-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH FONDATION CH (BASEL) coordinator 191˙149.00

Map

 Project objective

Cells are frequently exposed to stress conditions, which can disrupt cellular homeostasis and result in cell death. To minimize the damage and adapt to the stress condition, eukaryotic cells employ a highly conserved signaling pathway, the integrated stress response, which integrates a variety of intrinsic and extrinsic stress signals to reprogram mRNA translation. Consequently, translation of most mRNAs is inhibited to conserve energy, while a select group of stress-related mRNAs is preferentially translated to promote recovery and restore homeostasis. This preferential translation of stress-related mRNAs depends on special sequence elements called upstream open reading frames (uORF), but the molecular mechanisms behind this process remain largely unclear. To investigate the translational reprogramming during cellular stress, I will exploit recent advances in single-molecule imaging of mRNA translation in living human cells.

First, to understand how uORFs facilitate the preferential translation of stress-related transcripts in stressed cells, I will apply single-molecule imaging of mRNA translation to measure the translational dynamics at different start codons of uORF-containing reporter mRNAs. Next, I will test how the translational reprogramming is affected by the formation of stress-inducible ribonucleoprotein granules (stress granules). To this end, I will combine the single-molecule imaging of mRNA translation with imaging and optogenetic manipulation of stress granules. Last, to complement the single-molecule imaging approach, the same reporter mRNAs will be subjected to proximity-dependent labelling assays in order to identify novel factors that facilitate stress-induced translation.

Together, this project will provide important insights into the regulation of mRNA translation during cellular stress. This will also expand our understanding of pathological conditions that involve misregulation of the integrated stress response.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MRNASTRESS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MRNASTRESS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

ROAR (2019)

Investigating the Role of Attention in Reading

Read More