Opendata, web and dolomites

ICELEARNING SIGNED

Artificial Intelligence techniques for ice core analyses

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ICELEARNING project word cloud

Explore the words cloud of the ICELEARNING project. It provides you a very rough idea of what is the project "ICELEARNING" about.

particles    bergen    environmental    barbante    last    climatic    cores    classification    prof    volcanic    insoluble    detections    foscari    images    breaking    proposer    synergy    representing    biosphere    ground    continuous    predictive    core    trapped    artificial    methodology    algorithms    diatom    records    producing    assemblages    ultra    imaging    icelearning    except    counting    quantification    analytical    manual    paleoceanography    observations    impurity    geology    date    oceanic    microscopy    record    sediment    pattern    antarctic    techniques    routine    prerequisites    detection    retrieve    automatic    innovative    marine    myr    geoscience    venice    trace    ice    preconditions    icelerning    samples    dust    machine    intelligence    diluted    imperative    university    surpassing    learning    recognition    flow    basis    models    suitable    foraminiferal    microscope    realms    pollen    cfa    paleoresearch    melted    paleoclimate    destructive    grains    carlo    ca    commercial    particle    atmospheric    expert    science    missing    volcanism   

Project "ICELEARNING" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA CA' FOSCARI VENEZIA 

Organization address
address: DORSODURO 3246
city: VENEZIA
postcode: 30123
website: www.unive.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 171˙473 €
 EC max contribution 171˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-15   to  2022-01-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA CA' FOSCARI VENEZIA IT (VENEZIA) coordinator 171˙473.00

Map

 Project objective

The detection of insoluble particles trapped in ice or sediment cores, like pollen grains, foraminiferal and diatom assemblages, volcanic and dust particles represents the basis for paleoresearch on the biosphere, volcanism and oceanic and atmospheric realms. To date, except for ice core dust, this analytical goal is achieved during years of particle observations by manual microscopy. Artificial Intelligence predictive models are already applied to several research fields within geoscience, but up to date its implementation to paleoclimate is missing. With ICELEARNING, I aim to develop a two-phase routine for the automatic quantification of insoluble particles trapped in ice cores. The routine is based on a commercial Flow Imaging Microscope producing particle images from within melted ice samples. The images are then analyzed by Pattern Recognition algorithms which will be developed for automatic particle classification and counting. The routine will be specifically developed in order to be implemented in Continuous Flow Analysis (CFA) systems, therefore surpassing the traditional methods by providing continuous particle records from ice cores. ICELEARNING methodology is suitable to any diluted sample, thus representing a ground-breaking analytical advancement from ice core science to marine geology. This innovative routine is automatic and non-destructive, imperative prerequisites for the future Antarctic ice core project analytical measurements, aiming to retrieve a continuous climatic and environmental record covering the last 1.5 Myr. ICELERNING will be developed at Ca’ Foscari University of Venice with Prof. Carlo Barbante, leading expert in trace and ultra-trace level impurity detections in ice cores and with the University of Bergen, a top institution in marine geology and paleoceanography. This unique synergy, in addition to the proposer’s knowledge of CFA systems and machine learning techniques will provide the best preconditions for the project success.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ICELEARNING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ICELEARNING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TARGET SLEEP (2020)

Boosting motor learning through sleep and targeted memory reactivation in ageing and Parkinson’s disease

Read More  

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

CP-FTmmW Aminogen (2020)

Chemistry and structure of aminogen radicals using chirped-pulse Fourier transform (sub)millimeter rotational spectroscopy

Read More