Opendata, web and dolomites

ICELEARNING SIGNED

Artificial Intelligence techniques for ice core analyses

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ICELEARNING project word cloud

Explore the words cloud of the ICELEARNING project. It provides you a very rough idea of what is the project "ICELEARNING" about.

missing    carlo    volcanism    quantification    detection    pattern    detections    suitable    paleoceanography    artificial    proposer    myr    continuous    counting    machine    atmospheric    bergen    biosphere    record    routine    surpassing    algorithms    university    innovative    synergy    science    date    assemblages    last    realms    except    volcanic    sediment    trapped    diluted    breaking    paleoclimate    preconditions    geoscience    predictive    paleoresearch    prof    core    grains    images    learning    analytical    particle    records    techniques    microscope    methodology    trace    ice    antarctic    samples    particles    producing    destructive    ground    foscari    ca    diatom    flow    recognition    barbante    automatic    manual    icelearning    prerequisites    representing    retrieve    ultra    microscopy    classification    cores    dust    melted    icelerning    observations    models    commercial    venice    climatic    foraminiferal    imaging    basis    expert    imperative    insoluble    oceanic    environmental    marine    intelligence    pollen    impurity    cfa    geology   

Project "ICELEARNING" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA CA' FOSCARI VENEZIA 

Organization address
address: DORSODURO 3246
city: VENEZIA
postcode: 30123
website: www.unive.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 171˙473 €
 EC max contribution 171˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-15   to  2022-01-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA CA' FOSCARI VENEZIA IT (VENEZIA) coordinator 171˙473.00

Map

 Project objective

The detection of insoluble particles trapped in ice or sediment cores, like pollen grains, foraminiferal and diatom assemblages, volcanic and dust particles represents the basis for paleoresearch on the biosphere, volcanism and oceanic and atmospheric realms. To date, except for ice core dust, this analytical goal is achieved during years of particle observations by manual microscopy. Artificial Intelligence predictive models are already applied to several research fields within geoscience, but up to date its implementation to paleoclimate is missing. With ICELEARNING, I aim to develop a two-phase routine for the automatic quantification of insoluble particles trapped in ice cores. The routine is based on a commercial Flow Imaging Microscope producing particle images from within melted ice samples. The images are then analyzed by Pattern Recognition algorithms which will be developed for automatic particle classification and counting. The routine will be specifically developed in order to be implemented in Continuous Flow Analysis (CFA) systems, therefore surpassing the traditional methods by providing continuous particle records from ice cores. ICELEARNING methodology is suitable to any diluted sample, thus representing a ground-breaking analytical advancement from ice core science to marine geology. This innovative routine is automatic and non-destructive, imperative prerequisites for the future Antarctic ice core project analytical measurements, aiming to retrieve a continuous climatic and environmental record covering the last 1.5 Myr. ICELERNING will be developed at Ca’ Foscari University of Venice with Prof. Carlo Barbante, leading expert in trace and ultra-trace level impurity detections in ice cores and with the University of Bergen, a top institution in marine geology and paleoceanography. This unique synergy, in addition to the proposer’s knowledge of CFA systems and machine learning techniques will provide the best preconditions for the project success.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ICELEARNING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ICELEARNING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

POLINGO (2018)

The Politics of Legitimacy: Non-partisan global governance and networked INGO power in the global governance of post-war states

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More