Opendata, web and dolomites

TOPOGRAPHYSENSING SIGNED

Effects of 3D topographies on mechanosensing in intestine epithelial architecture and dynamics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TOPOGRAPHYSENSING project word cloud

Explore the words cloud of the TOPOGRAPHYSENSING project. It provides you a very rough idea of what is the project "TOPOGRAPHYSENSING" about.

cells    monolayer    sites    organize    until    adhesion    mechanosensing    form    molecular    cytoskeleton    biology    conform    epcam    modulated    alpha    found    multidisciplinary    segregated    context    maintenance    techniques    shows    spatial    polarity    orderly    curved    cellular    interacting    ladoux    layered    mediated    platform    integral    observations    actin    modulation    sophisticated    substrates    mechanotransduction    geometric    contractility    manner    microfabrication    consists    organization    networks    hypothesis    microenvironmental    locations    beta    cues    biophysics    cadherin    mechanisms    regulation    forms    primarily    disordered    arrangement    topographies    exposed    hypothesize    participates    3d    versa    defective    interactions    sensing    ankyrin    sense    actomyosin    cell    collective    cortical    functions    precise    dynamics    network    2d    spectrin    understand    tissue    tension    cytoskeletal    scrutinize    topographical    topographic    intestine    groups    shown    permeates    epithelial    vice    architecture    laboratory    epithelium    generating    contrast    unknown   

Project "TOPOGRAPHYSENSING" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 196˙707 €
 EC max contribution 134˙600 € (68%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2021-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 134˙600.00

Map

 Project objective

Intestine epithelium consists of spatially segregated cells that organize into groups of various functions at different locations of the 3D curved epithelial monolayer. How geometric cues contribute to the maintenance of the sophisticated epithelial architecture and dynamics in 3D remains unknown until now. Recently, the Ladoux's laboratory has found that EpCAM-modulated cell contractility associated with the epithelial monolayer polarity, cytoskeletal arrangement, and cell-cell adhesion in 3D context. In contrast to 2D context, the EpCAM-defective tissue shows a loss of collective cellular spatial organization and forms a disordered multi-layered epithelium when exposed to substrates of 3D topographies. In addition, Ankyrin-G and α/β-spectrin network which participates in cortical tension modulation was identified as the main interacting partner with EpCAM in epithelial cells. These observations lead us to hypothesize that EpCAM allows the tissue to sense and conform to complex 3D topographies in an orderly manner. However, the molecular mechanisms and other related functions of EpCAM-mediated mechanotransduction remain unknown. As large scale mechanosensing has been shown to occur primarily through the actin cytoskeleton which permeates the tissue to form a network, we aim to understand the interactions between the EpCAM-mediated pathway and actin modulation and/or E-cadherin adhesion sites that may allow 3D topographical sensing. Our working hypothesis is that EpCAM forms an integral part of the cellular responses to topographic cues that has a more general role in controlling epithelial architecture and dynamics through the regulation of actomyosin networks, or vice versa. Here, we propose to scrutinize EpCAM-mediated mechanotransduction by generating a platform with precise control of geometric factors and microenvironmental cues using a range of multidisciplinary approaches including microfabrication, biophysics, and advanced molecular biology techniques.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TOPOGRAPHYSENSING" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TOPOGRAPHYSENSING" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

Migration Ethics (2019)

Migration Ethics

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More