Opendata, web and dolomites

ANDANTE SIGNED

AttributioN of DynAmic and thermodyNamic components in exTreme weather and climate Events

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ANDANTE" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2022-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 224˙933.00

Map

 Project objective

Extreme weather and climate events, such as heat waves, droughts and their combinations, are intrinsic aspects of the evolution of the climate system, and they can have substantial environmental and socio-economic impacts. Every extreme event is the result of a superposition of external drivers, natural and anthropogenic, and internal variability. Risk-based or probabilistic extreme event attribution assesses to what extent anthropogenic drivers modify the probability and magnitude, and hence the risk of an extreme event or a class of events to understand regional impacts of climate change. Surface conditions depend on the patterns of atmospheric circulation. Thus, in a specific region human-induced thermodynamic influence can be amplified or counteracted by human-induced change in the atmospheric circulation. The main goal of ANDANTE is to separate human-induced dynamic (i.e. circulation/flow) and thermodynamic contributions to the risk of selected extreme events in Europe and Africa. Since we are dealing with rare events we need large or even better very large ensembles of model simulations (~1,000 members) to do the flow-conditional probabilistic event attribution in statistically sound way (i.e. to get well-resolved probability distributions) with the methods of flow clusters (weather regimes/climate modes) and flow analogues. The project will make a key contribution to the development of the next-generation prediction and event attribution system. The produced new very large ensembles will be combined with the current-generation ensembles as well as multi-model climate simulations and multi-member reanalysis products to perform robust multi-method estimates of the univariate and multivariate (i.e. multi-variable) risk indicators. The risk assessment of selected extreme events manifested in surface temperature, precipitation, potential evapotranspiration and fire weather index can be useful to a wide spectrum of stakeholders interested in climate change impacts.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ANDANTE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ANDANTE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

TRANSMODERN (2019)

Untranslatable Modernity: Modern Literary Theory from Europe to Iran

Read More