Opendata, web and dolomites

FunStructure SIGNED

Interdependence of functional and structural plasticity in cerebellar climbing fibers in health and disease

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FunStructure project word cloud

Explore the words cloud of the FunStructure project. It provides you a very rough idea of what is the project "FunStructure" about.

pathological    fibers    gap    choosing    cerebellar    encode    effect    axonal    constructs    optogenetics    modify    mouse    cf    unclear    pathogenesis    circuit    43    alterations    physiology    rules    electrophysiology    expression    stimulate    largely    induce    encoding    synergy    silence    microscopy    sclerosis    memory    function    protein    significantly    plasticity    silencing    nucleus    originate    modified    morphology    neurons    calcium    voltage    acutely    sk2    vivo    cfs    analyze    channels    brain    structural    intrinsic    pf    slice    circuits    confocal    sodium    multiple    sides    gated    respectively    model    engrams    inferior    rest    upregulation    synaptic    modulate    structure    climbing    re1    ms    chronically    disease    olive    understand    transduced    interdependence    previously    shown    diseases    excitability    neuronal    viral    transcription    potassium    relationship    corresponding    modifications    conditional    knockout   

Project "FunStructure" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 171˙473 €
 EC max contribution 171˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2019
 Duration (year-month-day) from 2019-07-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 171˙473.00

Map

 Project objective

Modifications of the structure and intrinsic excitability of neurons (i.e. “structural plasticity” and “intrinsic plasticity”) have been proposed to contribute significantly in encoding memory in synergy with synaptic plasticity and have been shown to contribute to the pathogenesis of several diseases including multiple sclerosis (MS). However, it is still largely unclear how changes in intrinsic excitability affect structural plasticity and how this affects circuit function. A better understanding of this two-way interdependence is crucial to understand how brain circuits encode memory engrams and are affected by diseases. Here I propose to investigate the two sides of this function-structure relationship choosing cerebellar climbing fibers (CF) as a model. Using in vivo viral delivery in the inferior olive nucleus (where climbing fibers originate), electrophysiology, optogenetics and confocal microscopy I will modulate CF function or structure acutely in slice or chronically in vivo and analyze the corresponding effect on CF morphology or physiology, respectively. I will use previously developed viral constructs to silence the expression of the growth-associated protein 43 (GAP-43) or voltage-gated sodium channels to induce structural modifications or a reduction of excitability in CFs, respectively; I will also use optogenetics to specifically stimulate transduced CFs in slice and a recently established conditional knockout mouse for SK2-type calcium-gated potassium channels to increase CF excitability. In order to investigate how CF function and structure may be modified in pathological conditions I will focus on the effects of the upregulation of the RE1-Silencing Transcription Factor (REST) observed in MS and related to alterations of neuronal excitability and axonal structure. This project will show how CF activity can modify its structure and PF plasticity rules, contributing to memory formation and disease.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FUNSTRUCTURE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FUNSTRUCTURE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More  

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More