Explore the words cloud of the FLATBANDS project. It provides you a very rough idea of what is the project "FLATBANDS" about.
The following table provides information about the project.
Coordinator |
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙499˙640 € |
EC max contribution | 1˙499˙640 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-STG |
Funding Scheme | ERC-STG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-05-01 to 2025-04-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV | DE (MUENCHEN) | coordinator | 1˙499˙640.00 |
'One spectacular phenomenon in quantum many-body systems is the emergence of non-local quasiparticles with fractional quantum numbers and anyonic statistics. Of fundamental interest, fractionalization also holds promise for fault-tolerant quantum computation motivating the search for such exotic phases of matter. Signatures of this phenomenon remain sparse and mostly restricted to fractional quantum Hall states, despite being predicted to also occur in other systems such as frustrated quantum magnets. An essential feature shared by both systems is the massive ground state degeneracy, or flat band, out of which fractionalization emerges. The underlying non-local topological order of such phases is an outstanding experimental challenge to detect with only local observables. Building on my experience to study 'hidden' order in one dimensional systems, I will address the physics of strong correlations in two and three dimensional flatbands using ultracold atoms and the unique probes of atomic physics. I propose in FLATBANDS to build a novel strontium quantum gas microscope to study both fractional quantum Hall states and highly frustrated magnets. I will first rotate mesoscopic dilute Bose gases to mimic the behaviour of electrons in magnetic fields. Using observables down to individual particles, I will study density-density correlations in the lowest Landau level, providing signatures of emerging Laughlin-like states. On the same platform, I will measure spin correlations and detect fractionalization in highly frustrated magnets. Using atoms trapped in programmable tweezer arrays and excited in Rydberg states, I will engineer quantum spin-ice and directly observe the emergence of magnetic monopoles. By following two complementary routes to address strong correlations and topological order, FLATBANDS will open fascinating perspectives with impact in quantum information, quantum computation, and condensed matter physics.'
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FLATBANDS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "FLATBANDS" are provided by the European Opendata Portal: CORDIS opendata.