Explore the words cloud of the CQWLED project. It provides you a very rough idea of what is the project "CQWLED" about.
The following table provides information about the project.
Coordinator |
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Organization address contact info |
Coordinator Country | Switzerland [CH] |
Total cost | 1˙498˙515 € |
EC max contribution | 1˙498˙515 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2019-STG |
Funding Scheme | ERC-STG |
Starting year | 2020 |
Duration (year-month-day) | from 2020-01-01 to 2024-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH | CH (ZUERICH) | coordinator | 1˙498˙515.00 |
The colloidal quantum dots (CQDs) are an emerging class of light-emitting compounds for solution-processed optoelectronics such as the light-emitting diodes (LEDs). Compared to the state-of-the-art compound semiconductors and organic light emitting diodes (OLED), the CQD-based LEDs possess extremely high color purity and low materials cost, representing the only feasible materials solution towards realization of the newly-defined Rec. 2020 standard for the next-generation displays. However, the theoretical upper limit of the device external quantum efficiency (EQE) is only ~20%, considerably lower than those in OLEDs and InGaN LEDs. The fundamental bottleneck is that it is not yet possible to control the emission directionality perpendicular to the substrate plane in the CQD superlattices, without compromising the photoluminescence quantum yield (PLQY). As a result, a lot of photons are wasted due to the total internal reflection (TIR) at the air/glass interface, as well as exciton quenching during interparticle energy transfer. In order to overcome the efficiency limitation, my research group pioneers synthesis, physics, and LED device of layer-controlled colloidal quantum wells (CQWs) of organic-inorganic hybrid lead halide perovskites (OIHPs), the two-dimensional nanocrystals of OIHP in colloidal solution. Our results have suggested that the materials system might be the ultimate solution for the quantum-dot based LEDs. We found that the CQWs possess: (i) the aggregation-induced emission (AIE) characteristics, boosting the film PLQY up to 97%, and (ii) the emission directionality (ED) perpendicular to the substrate plane in their self-assembled superlattices. Based on the new photophysical properties that have never been found in any other CQD systems, in this proposal, we aim to optimally utilize the characteristics of the AIE and ED, in order to realize high-efficiency and long-lifetime LED technology that can fulfill 100% Rec. 2020 color gamut.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CQWLED" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "CQWLED" are provided by the European Opendata Portal: CORDIS opendata.
Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks
Read MoreCancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.
Read More