Opendata, web and dolomites

ICED SIGNED

Impact of climate on mountain denudation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ICED" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE LAUSANNE 

Organization address
address: Quartier Unil-Centre Bâtiment Unicentre
city: LAUSANNE
postcode: 1015
website: www.unil.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙431˙285 €
 EC max contribution 1˙431˙285 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2024-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE LAUSANNE CH (LAUSANNE) coordinator 1˙431˙285.00

Map

 Project objective

Mountain ranges evolve in response to tectonic uplift, erosion and climatic change, but decoupling the feedbacks between these processes remains one of the most active debates in Earth Science. Resolving this debate is fundamental for successful projection of Earth’s surface response under a changing climate. The Impact of ClimatE on mountain Denudation remains highly contested because no technique is available to resolve changes in erosion rates over the timescale of glacial-interglacial cycles i.e. 10^3-6 years, a key time range for quantifying the role that silicate weathering and denudation plays in modulating global climatic change. ICED will resolve this debate through establishing time-series of rock erosion over 10^3-6 years, allowing erosion rate changes to be related to specific climatic changes, and specific processes, for the first time. These data will show whether tectonics or climatic feedbacks on surface processes are dominant in determining rates of surface denudation, providing insights into the influence of the lithosphere on global climatic change throughout the Quaternary period (ice age).

The objective of ICED will be achieved through the development and application of recently established thermochronometers based on the luminescence and electron spin resonance of quartz and feldspar minerals. Thermochronometers measure the rate of rock cooling, from which rates of rock exhumation and thus erosion rates can be calculated. Unlike existing methods, the new techniques developed within ICED are capable of resolving changes in erosion over timescales of between 10^3-6 years. Combining these new methods with cosmogenic nuclide data, using numerical models developed within ICED, will allow the generation of high-resolution time-series of erosion. The strategic application of these new techniques to the western European Alps will allow the Impact of ClimatE on mountain Denudation rates to be resolved for the first time.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ICED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ICED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TechChild (2019)

Just because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More