Opendata, web and dolomites

NOVACHIP SIGNED

Novel vascular-like BBB-on-a-chip

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NOVACHIP project word cloud

Explore the words cloud of the NOVACHIP project. It provides you a very rough idea of what is the project "NOVACHIP" about.

scalable    barrier    obstacle    assembly    reports    resemble    poc    grow    permeability    ad    technique    there    linked    capacity    geometries    disease    indicate    mri    vivo    commercially    screening    fluidic    starting    found    resonance    companies    human    generating    patients    off    disorders    biomechanical    acute    vessel    biomarkers    complications    properly    practical    capillaries    pharmaceutical    animal    pathophysiology    model    relevance    molecules    overcome    therapies    predict    drugs    vessels    microfluidic    components    biological    fabrication    structural    ineffective    magnetic    personalized    extracellular    neurological    patent    endothelialized    novachip    safer    cells    3d    stiffness    drug    erc    grant    blood    brain    sizes    models    thanks    combines    inability    native    self    incorporate    preparation    designed    imaging    20    chip    recreating    vitro    industry    risk    ecm    tissue    constitutes    kidney    variety    shown    plaques    nephrotoxicity    limited    compare    matrix    biologically    strofunscaff    proposes    reduce    bbb    treatments    bioprinting    break    functional    diseases    toxicity    rat    quantifying    exhibit    alzheimer    evident    made   

Project "NOVACHIP" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF NOTTINGHAM 

Organization address
address: University Park
city: NOTTINGHAM
postcode: NG7 2RD
website: www.nottingham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙951 €
 EC max contribution 149˙951 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-PoC
 Funding Scheme ERC-POC
 Starting year 2020
 Duration (year-month-day) from 2020-11-01   to  2022-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF NOTTINGHAM UK (NOTTINGHAM) coordinator 149˙951.00

Map

 Project objective

There is great need to develop safer and more biologically relevant models for drug screening. Recent reports indicate that up to 20% of acute kidney complications can be linked to drug-induced nephrotoxicity and more than 40 molecules found to reduce Alzheimer’s Disease (AD)-related plaques in animal models were shown to be ineffective in AD patients. It is increasingly evident that both in vitro and in vivo models being used to develop drugs have a limited capacity to predict the pathophysiology of human disease, personalized response, and off-target drug toxicity. The inability to properly test drugs and treatments to diseases such as AD constitutes a risk for pharmaceutical companies and a major obstacle to overcome. This ERC PoC proposal aims to establish a practical microfluidic fabrication process capable of recreating structural and biomechanical features of native blood vessels. Specifically, we aim to develop a scalable 3D Blood-Brain-Barrier in vitro model (BBB-on-a-chip) able to provide a higher level of biological relevance than current in vitro models. The development of such a system would represent a major break-through for the pharmaceutical industry generating therapies for a variety of neurological disorders. Thanks to the ERC Starting Grant STROFUNSCAFF, we have developed a simple fabrication process that combines bioprinting and self-assembly to grow functional fluidic devices with endothelialized vessel-like capillaries (patent application in preparation). NOVACHIP proposes to a) build scalable microfluidic devices made from capillaries that incorporate relevant cells and extracellular matrix (ECM) components, exhibit tissue-like stiffness, and can be designed with specific sizes and geometries to better resemble the native BBB and b) compare it to a commercially available in vitro model as well as c) an established rat model by quantifying permeability of specific imaging biomarkers for Magnetic Resonance Imaging (MRI) technique.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NOVACHIP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NOVACHIP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

ORGANITRA (2019)

Transport of phosphorylated compounds across lipid bilayers by supramolecular receptors

Read More