Opendata, web and dolomites

NOVACHIP SIGNED

Novel vascular-like BBB-on-a-chip

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NOVACHIP project word cloud

Explore the words cloud of the NOVACHIP project. It provides you a very rough idea of what is the project "NOVACHIP" about.

self    there    biomarkers    ad    properly    fluidic    exhibit    compare    constitutes    proposes    shown    models    off    practical    obstacle    drugs    barrier    linked    generating    extracellular    patent    overcome    stiffness    native    toxicity    20    commercially    companies    preparation    components    designed    kidney    biologically    predict    reports    alzheimer    ecm    novachip    personalized    magnetic    capillaries    break    model    vivo    acute    disorders    disease    made    bioprinting    technique    imaging    geometries    thanks    animal    molecules    scalable    therapies    assembly    rat    variety    cells    microfluidic    inability    brain    blood    poc    tissue    vessels    reduce    screening    recreating    plaques    industry    combines    vessel    resonance    pharmaceutical    vitro    capacity    permeability    biomechanical    chip    indicate    patients    quantifying    fabrication    bbb    mri    ineffective    incorporate    grant    grow    drug    complications    nephrotoxicity    resemble    risk    biological    evident    structural    sizes    human    limited    treatments    neurological    matrix    3d    endothelialized    found    strofunscaff    pathophysiology    functional    erc    safer    diseases    starting    relevance   

Project "NOVACHIP" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF NOTTINGHAM 

Organization address
address: University Park
city: NOTTINGHAM
postcode: NG7 2RD
website: www.nottingham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙951 €
 EC max contribution 149˙951 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-PoC
 Funding Scheme ERC-POC
 Starting year 2020
 Duration (year-month-day) from 2020-11-01   to  2022-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF NOTTINGHAM UK (NOTTINGHAM) coordinator 149˙951.00

Map

 Project objective

There is great need to develop safer and more biologically relevant models for drug screening. Recent reports indicate that up to 20% of acute kidney complications can be linked to drug-induced nephrotoxicity and more than 40 molecules found to reduce Alzheimer’s Disease (AD)-related plaques in animal models were shown to be ineffective in AD patients. It is increasingly evident that both in vitro and in vivo models being used to develop drugs have a limited capacity to predict the pathophysiology of human disease, personalized response, and off-target drug toxicity. The inability to properly test drugs and treatments to diseases such as AD constitutes a risk for pharmaceutical companies and a major obstacle to overcome. This ERC PoC proposal aims to establish a practical microfluidic fabrication process capable of recreating structural and biomechanical features of native blood vessels. Specifically, we aim to develop a scalable 3D Blood-Brain-Barrier in vitro model (BBB-on-a-chip) able to provide a higher level of biological relevance than current in vitro models. The development of such a system would represent a major break-through for the pharmaceutical industry generating therapies for a variety of neurological disorders. Thanks to the ERC Starting Grant STROFUNSCAFF, we have developed a simple fabrication process that combines bioprinting and self-assembly to grow functional fluidic devices with endothelialized vessel-like capillaries (patent application in preparation). NOVACHIP proposes to a) build scalable microfluidic devices made from capillaries that incorporate relevant cells and extracellular matrix (ECM) components, exhibit tissue-like stiffness, and can be designed with specific sizes and geometries to better resemble the native BBB and b) compare it to a commercially available in vitro model as well as c) an established rat model by quantifying permeability of specific imaging biomarkers for Magnetic Resonance Imaging (MRI) technique.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NOVACHIP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NOVACHIP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

QLite (2019)

Quantum Light Enterprise

Read More