Opendata, web and dolomites

DynaGrow SIGNED

Dynamic Growth and Replication in Coacervate Protocells

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DynaGrow project word cloud

Explore the words cloud of the DynaGrow project. It provides you a very rough idea of what is the project "DynaGrow" about.

droplets    modern    living    environment    complementary    blocks    building    replicators    complexity    coacervate    dual    lack    instability    life    peptide    stable    chains    inside    active    template    see    intrinsically    act    peptides    place    exactly    ripening    division    extinct    concentrates    patterns    mysteries    evolution    destined    class    reached    either    found    emergence    degree    appreciable    sequence    spontaneously    conjugation    molecules    fragments    spontaneous    compartment    inspired    cells    coacervates    predicted    science    mixtures    previously    divide    reactions    protocells    chemical    mark    shape    dilution    proteins    modifications    oligopeptides    sequences    condensed    replication    templates    ostwald    molecular    sufficiently    rates    coacervation    disordered    darwinian    fuel    functionalized    membrane    longer    surrounding    divides    minimal    organelles    replicate    right    never    biggest    fundamental    free    elongation    holds    directed    rate    liquid    undergo   

Project "DynaGrow" data sheet

The following table provides information about the project.

Coordinator
STICHTING KATHOLIEKE UNIVERSITEIT 

Organization address
address: GEERT GROOTEPLEIN NOORD 9
city: NIJMEGEN
postcode: 6525 EZ
website: www.radboudumc.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2025-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STICHTING KATHOLIEKE UNIVERSITEIT NL (NIJMEGEN) coordinator 1˙500˙000.00

Map

 Project objective

Replication and division are two of the most fundamental properties of living systems. Without replication, Darwinian evolution would not be possible, and life could never have reached the degree of complexity we see today. However, exactly how mixtures of non-living molecules developed the ability to replicate and divide, remains one of the biggest mysteries in modern science. Various molecular replicators have been investigated previously, but they are all destined to become extinct by dilution, since they lack a surrounding compartment that divides spontaneously during replication.

In this proposal, we aim at developing a new class of coacervate-based protocells that are capable of active growth and template-directed replication. The coacervates we propose here are condensed liquid droplets with a unique dual role: they act as a compartment that holds together and concentrates the template molecules and the building blocks, and they provide the right chemical environment for the replication reactions to take place at an appreciable rate. The coacervate-based protocells are composed of oligopeptides with low complexity sequences, inspired by the intrinsically disordered proteins found in membrane-free organelles inside cells. Active growth is achieved through fuel-driven reactions, either by elongation of existing peptides or by specific chemical modifications at the peptide side chains that enhance their coacervation potential. Longer peptides can also act as templates for conjugation of end-functionalized peptide fragments with sequence patterns complementary to the template. Protocells with sufficiently high growth or replication rates are not only stable against Ostwald ripening, but are also predicted to undergo spontaneous division through a shape instability. This would mark a key step in the emergence of minimal cells and open the way for the evolution of more complex life-like systems.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DYNAGROW" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DYNAGROW" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More