Opendata, web and dolomites

AgingTimer SIGNED

Systems biology of the individual stochastic timer of aging

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "AgingTimer" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 8˙687˙500 €
 EC max contribution 8˙687˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-SyG
 Funding Scheme ERC-SyG
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2026-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 8˙687˙500.00

Map

 Project objective

Aging is the biggest risk factor for frailty and death. However, we lack basic understanding of a fundamental question: Why do genetically identical organisms raised in the same conditions get sick and die at different times? If we understood the stochastic timer that drives aging in each individual, we could devise ways to turn back the timer and treat age-related diseases, extending the healthy lifespan. This requires addressing both molecular and social factors that vary between individuals, such as socioeconomic status in humans and social ranking in mice, which impact every aspect of aging. This synergy program aims to identify the stochastic timer of aging and develop methods to read the timer and turn it back. We use mice as a tractable organism relevant to human aging, and combine three disciplines: 1) systems biology to mathematically define the stochastic timer of aging and the basic concepts needed to understand its production, removal and noise processes; 2) neurobiology of behavioral individuality; and 3) biology of cellular senescence, which studies the most promising candidate for the timer: senescent cells that accumulate with age, causing chronic inflammation and whose removal delays age-related decline. To pinpoint the timer, we will follow the natural variability of large cohorts of genetically identical mice, tracked across the lifespan by video and RFID tags. We will measure a battery of behavioral, physiological and molecular parameters, as well as senescent cells in multiple organs throughout life. We will use new mouse models that allow us to visualize, pull down and ablate senescent cells, to provide full molecular profiles of senescent cells in different organs and to characterize their immune-surveillance mechanisms. This study will provide basic understanding of the timer of aging and provide ways to read the timer. Moreover, we will offer new ways to set back the timer in order to address age-related diseases and functional decline.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AGINGTIMER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AGINGTIMER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CITISENSE (2019)

Evolving communication systems in response to altered sensory environments

Read More  

TORYD (2020)

TOpological many-body states with ultracold RYDberg atoms

Read More  

TransReg (2019)

Transgenerational epigenetic inheritance of cardiac regenerative capacity in the zebrafish

Read More