Opendata, web and dolomites

CORAL SIGNED

COntrolling network RAndom Lasers on chip

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CORAL" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 583˙232 €
 EC max contribution 583˙232 € (100%)
 Programme 1. H2020-EU.1.3.1. (Fostering new skills by means of excellent initial training of researchers)
 Code Call H2020-MSCA-ITN-2019
 Funding Scheme MSCA-ITN-EID
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 286˙329.00
2    IBM RESEARCH GMBH CH (RUESCHLIKON) participant 296˙903.00

Map

 Project objective

The photonics industry in Europe is in rapid growth, lasers in particular have played a central role in several technological developments for many decades, from communications to medicine. As photonic devices shrink in both physical size and power consumption, integrated photonic devices will increasingly penetrate into consumer products such as smartphones and photonic sensors, for various applications from motion detection to navigation of autonomous vehicles. The European Industrial doctorate program CORAL will address the increasing need for educated professionals in this field, by the training of two young researchers in photonics technology and in particular in the relatively new field of random lasers, which is at the cross-roads between nanophotonics and neuromorphic applications. CORAL proposes a training programme between two world-class institutions, IBM and Imperial College London (ICL) each bringing in unique expertise and providing an appropriate balance of applied industrial research as well as in-depth understanding of the underlying physics. CORAL will bridge the entire value chain in III-V photonics integration based on both bonding and direct monolithic growth to establishing a simulation framework for networks of nanolasers. Both ESRs will gain experience with hands-on laser fabrication in the IBM cleanroom facilities, combined with various optical characterization routines at both IBM and ICL, and they will gain a deep understanding of laser physics from the advanced simulation at ICL. In addition to providing them with a scientific training meeting the needs of the European photonics industry, this will also push the emerging field of random laser networks towards a new level of maturity based on a III-V on silicon platform. Thereby, opening up for potential integration with silicon CMOS, and an entirely new range of applications.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CORAL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CORAL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.1.)

SuperCol (2020)

SuperCol: Rational design of super-selective and responsive colloidal particles for biomedical applications

Read More  

ORBITAL (2019)

Ocular Research By Integrated Training And Learning

Read More  

SAMCAPS (2018)

Self-Assembled MicroCAPSules: Synthesis, Characterization, and Eco-friendly Application in Home Care Products

Read More