Opendata, web and dolomites

SOLVE SIGNED

Stratospheric Ozone Loss from Volcanic Eruptions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SOLVE project word cloud

Explore the words cloud of the SOLVE project. It provides you a very rough idea of what is the project "SOLVE" about.

man    absorbs    irradiation    cold    reaction    scenarios    containing    species    halons    causing    setup    decades    emissions    explosive    composition    reactive    possibly    atmosphere    human    incorporating    recovery    small    away    chemistry    earth    changing    transform    protocol    temperature    depletion    laboratory    made    volcanic    life    kinetics    perturbation    emerged    protecting    agriculture    damage    models    significantly    reservoir    introduce    halogen    health    matrix    montreal    copenhagen    experiments    last    cfcs    university    harvard    ozone    enhanced    global    full    carry    stratosphere    understand    reactions    layer    mechanisms    uv    infrared    kinetic    caused    fourier    banned    quantum    harmful    atmospheric    climate    altered    dynamics    lived    bromine    variety    regarding    eruptions    calculations    amendments    catalytic    chemical    stratospheric    injections    molecular    absorption    spectroscopy    model    first    nature    cavity   

Project "SOLVE" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 286˙921 €
 EC max contribution 286˙921 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-GF
 Starting year 2021
 Duration (year-month-day) from 2021-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 286˙921.00
2    PRESIDENT AND FELLOWS OF HARVARD COLLEGE US (CAMBRIDGE) partner 0.00

Map

 Project objective

The stratospheric ozone layer absorbs harmful UV irradiation, protecting life on Earth. Only small changes are needed for significant damage to human health and agriculture, making it essential to understand the chemistry behind ozone depletion. Most of the ozone depletion has been caused by man-made emissions of the CFCs and halons, which are now banned through the Montreal Protocol and its amendments. However, due to the long-lived nature of these species, full recovery of the ozone layer is still decades away. In a changing climate, stratospheric composition, temperature and dynamics may be significantly altered, changing the catalytic ozone depletion in the future. Furthermore, new concerns regarding the ozone layer have emerged, with explosive volcanic eruptions possibly causing the largest perturbation to the ozone layer in the future. In this project, I will use different methods to determine the impact of halogen injections into the stratosphere on the ozone layer, determining the kinetics of bromine-containing species using laboratory and quantum chemical methods and incorporating them into a global chemistry and climate model. The first two years, I will be at Harvard, where I will use different atmospheric models to investigate the stratospheric impact of volcanic eruptions for a variety of future climate scenarios. I will also be carrying out experiments using cavity enhanced absorption spectroscopy to determine the kinetics of an atmospheric reservoir species for reactive bromine in the atmosphere. In the last year of the project I will be at University of Copenhagen and carry out experiments with a cold matrix setup with Fourier transform infrared spectroscopy to investigate the reaction. Throughout the project, I will determine the mechanisms of halogen reactions at the molecular level using quantum chemical calculations. I will introduce the results from the kinetic experiments and quantum calculations into the models as they become available.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SOLVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SOLVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More  

PROSPER (2019)

Politics of Rulemaking, Orchestration of Standards, and Private Economic Regulations

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More