Opendata, web and dolomites

SOLVE SIGNED

Stratospheric Ozone Loss from Volcanic Eruptions

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SOLVE project word cloud

Explore the words cloud of the SOLVE project. It provides you a very rough idea of what is the project "SOLVE" about.

dynamics    model    altered    bromine    changing    health    carry    full    uv    agriculture    kinetics    molecular    halons    decades    away    global    lived    recovery    absorbs    calculations    perturbation    laboratory    quantum    last    chemical    cfcs    reservoir    mechanisms    catalytic    man    spectroscopy    protecting    incorporating    cavity    significantly    transform    protocol    temperature    causing    emerged    made    setup    regarding    ozone    enhanced    earth    reactive    halogen    stratosphere    introduce    infrared    injections    scenarios    models    depletion    small    montreal    volcanic    matrix    human    variety    layer    nature    composition    emissions    university    explosive    containing    harmful    banned    irradiation    copenhagen    life    experiments    harvard    atmospheric    reaction    stratospheric    caused    understand    damage    species    atmosphere    absorption    fourier    climate    cold    chemistry    reactions    amendments    eruptions    first    kinetic    possibly   

Project "SOLVE" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 286˙921 €
 EC max contribution 286˙921 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-GF
 Starting year 2021
 Duration (year-month-day) from 2021-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 286˙921.00
2    PRESIDENT AND FELLOWS OF HARVARD COLLEGE US (CAMBRIDGE) partner 0.00

Map

 Project objective

The stratospheric ozone layer absorbs harmful UV irradiation, protecting life on Earth. Only small changes are needed for significant damage to human health and agriculture, making it essential to understand the chemistry behind ozone depletion. Most of the ozone depletion has been caused by man-made emissions of the CFCs and halons, which are now banned through the Montreal Protocol and its amendments. However, due to the long-lived nature of these species, full recovery of the ozone layer is still decades away. In a changing climate, stratospheric composition, temperature and dynamics may be significantly altered, changing the catalytic ozone depletion in the future. Furthermore, new concerns regarding the ozone layer have emerged, with explosive volcanic eruptions possibly causing the largest perturbation to the ozone layer in the future. In this project, I will use different methods to determine the impact of halogen injections into the stratosphere on the ozone layer, determining the kinetics of bromine-containing species using laboratory and quantum chemical methods and incorporating them into a global chemistry and climate model. The first two years, I will be at Harvard, where I will use different atmospheric models to investigate the stratospheric impact of volcanic eruptions for a variety of future climate scenarios. I will also be carrying out experiments using cavity enhanced absorption spectroscopy to determine the kinetics of an atmospheric reservoir species for reactive bromine in the atmosphere. In the last year of the project I will be at University of Copenhagen and carry out experiments with a cold matrix setup with Fourier transform infrared spectroscopy to investigate the reaction. Throughout the project, I will determine the mechanisms of halogen reactions at the molecular level using quantum chemical calculations. I will introduce the results from the kinetic experiments and quantum calculations into the models as they become available.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SOLVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SOLVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

CHES (2020)

Resilience of Coastal Human-Environment Systems

Read More  

UNMACRODYN (2019)

Uncertainty shocks, inflation dynamics and monetary policy

Read More