Explore the words cloud of the UNCARIA project. It provides you a very rough idea of what is the project "UNCARIA" about.
The following table provides information about the project.
Coordinator |
UNIVERSIDAD POMPEU FABRA
Organization address contact info |
Coordinator Country | Spain [ES] |
Total cost | 224˙071 € |
EC max contribution | 224˙071 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2019 |
Funding Scheme | MSCA-IF-GF |
Starting year | 2020 |
Duration (year-month-day) | from 2020-11-02 to 2023-05-01 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | UNIVERSIDAD POMPEU FABRA | ES (BARCELONA) | coordinator | 224˙071.00 |
2 | THE UNIVERSITY OF ADELAIDE | AU (ADELAIDE) | partner | 0.00 |
Cardiovascular diseases account for nearly 45% of all deaths in Europe, with a yearly cost to the EU economy of €210 billions. The emergence of a new generation of deep neural networks (DNNs), powered by higher computing capabilities and the availability of large amounts of data, has enabled unprecedented predictive accuracy, bringing the promise of improving risk assessment and early diagnosis to the field of computational cardiac image understanding. Unfortunately, clinical translation of these tools has not been effectively accomplished yet. A key reason is the black-box nature of these models: through the observation of large-scale annotated data, DNNs can build rich, complex decision boundaries in the image space, but the sequence of mathematical operations leading to such decisions is not readily interpretable by humans.
The goal of this project is to open this black-box in a specific direction: building in these models the ability of understanding when they deliver a prediction with a well-founded confidence degree, and when a prediction is reached based only on local statistical regularities of training data and may not be reliable. Current models largely lack this ability, and this undermines their potential for clinical adoption. This project revolves around a fundamental idea: redefining the conventional way of training DNNs so that they can not only produce accurate diagnostic predictions but also model their own errors and have an awareness of them.
This proposal involves the transfer of the candidate to a worldwide renowned computer vision group, with a secondment in a top-tier medical research institution, followed by a returning stage in one of the most prestigious biomedical image analysis research groups within Europe. The proposed workplan is designed to train the candidate in both cutting-edge computer vision and clinical knowledge in the outgoing stage, maximizing potential for knowledge transfer to the European host during the incoming phase.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UNCARIA" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "UNCARIA" are provided by the European Opendata Portal: CORDIS opendata.