Opendata, web and dolomites

UNCARIA SIGNED

UNCARIA: UNcertainty estimation in CARdiac Image Analysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 UNCARIA project word cloud

Explore the words cloud of the UNCARIA project. It provides you a very rough idea of what is the project "UNCARIA" about.

model    revolves    amounts    computing    reached    renowned    box    biomedical    transfer    prestigious    building    groups    medical    fundamental    local    predictions    regularities    powered    lack    210    idea    undermines    worldwide    annotated    redefining    workplan    group    space    cutting    tier    neural    statistical    enabled    billions    errors    host    readily    operations    deaths    models    vision    boundaries    unprecedented    cardiac    emergence    edge    accomplished    outgoing    secondment    train    designed    largely    decision    followed    candidate    accurate    clinical    computational    humans    unfortunately    prediction    generation    accuracy    stage    nature    promise    adoption    observation    risk    translation    yearly    mathematical    networks    interpretable    deep    diagnosis    nearly    black    predictive    data    dnns    direction    conventional    economy    returning    tools    45    maximizing    incoming    degree    computer    cardiovascular    sequence    diseases    image    decisions    training    diagnostic    founded    confidence   

Project "UNCARIA" data sheet

The following table provides information about the project.

Coordinator
UNIVERSIDAD POMPEU FABRA 

Organization address
address: PLACA DE LA MERCE, 10-12
city: BARCELONA
postcode: 8002
website: www.upf.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 224˙071 €
 EC max contribution 224˙071 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-GF
 Starting year 2020
 Duration (year-month-day) from 2020-11-02   to  2023-05-01

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSIDAD POMPEU FABRA ES (BARCELONA) coordinator 224˙071.00
2    THE UNIVERSITY OF ADELAIDE AU (ADELAIDE) partner 0.00

Map

 Project objective

Cardiovascular diseases account for nearly 45% of all deaths in Europe, with a yearly cost to the EU economy of €210 billions. The emergence of a new generation of deep neural networks (DNNs), powered by higher computing capabilities and the availability of large amounts of data, has enabled unprecedented predictive accuracy, bringing the promise of improving risk assessment and early diagnosis to the field of computational cardiac image understanding. Unfortunately, clinical translation of these tools has not been effectively accomplished yet. A key reason is the black-box nature of these models: through the observation of large-scale annotated data, DNNs can build rich, complex decision boundaries in the image space, but the sequence of mathematical operations leading to such decisions is not readily interpretable by humans.

The goal of this project is to open this black-box in a specific direction: building in these models the ability of understanding when they deliver a prediction with a well-founded confidence degree, and when a prediction is reached based only on local statistical regularities of training data and may not be reliable. Current models largely lack this ability, and this undermines their potential for clinical adoption. This project revolves around a fundamental idea: redefining the conventional way of training DNNs so that they can not only produce accurate diagnostic predictions but also model their own errors and have an awareness of them.

This proposal involves the transfer of the candidate to a worldwide renowned computer vision group, with a secondment in a top-tier medical research institution, followed by a returning stage in one of the most prestigious biomedical image analysis research groups within Europe. The proposed workplan is designed to train the candidate in both cutting-edge computer vision and clinical knowledge in the outgoing stage, maximizing potential for knowledge transfer to the European host during the incoming phase.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UNCARIA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UNCARIA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EXPAND (2019)

Examining pan-neotropical diasporas

Read More  

ActinSensor (2019)

Identification and characterization of a novel damage sensor for cytoskeletal proteins in Drosophila

Read More  

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More