Opendata, web and dolomites

hyP5 SIGNED

Adopting orphan pumps: Structural and functional characterization of P5-ATPases

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 hyP5 project word cloud

Explore the words cloud of the hyP5 project. It provides you a very rough idea of what is the project "hyP5" about.

particle    astonishingly    substrates    ypk9p    spectrometry    catalytic    neurodegenerative    little    cellular    wish    molecular    guide    cofactors    pursue    language    membrane    mechanisms    atpases    strategies    lipids    mass    structural    superfamily    characterization    subsequently    structures    ca2    postdoc    treatments    conserved    profound    disorders    discovery    assays    3d    bound    functional    ions    proteins    serve    malfunctions    traits    phenotypical    basis    ray    function    belong    autism    neurological    last    diseases    cell    investigations    atp13a1    biotechnologically    eukaryotes    p5    em    subjects    despite    microscopy    cognitive    hek    severe    mutational    onset    transporters    familial    crystallography    drug    disease    spf1p    physiological    park9    reveal    interaction    na    purified    human    elucidate    atp13a2    actual    parkinsonism    ion    phd    expressed    network    relationships    yeasts    yeast    electron    decades    host    orthologues    substrate    structure    native    identification    cryo    pumps    cells    expand    single    biology    medicine    atpase   

Project "hyP5" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 219˙312 €
 EC max contribution 219˙312 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2021
 Duration (year-month-day) from 2021-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 219˙312.00

Map

 Project objective

P5-ATPases are conserved in all eukaryotes and malfunctions in human are associated with severe neurological diseases, such as familial early-onset parkinsonism and autism/language disorders, and with phenotypical traits in yeasts. They belong to the P-type ATPase superfamily, which encompass a range of essential membrane transporters for ions and lipids. Ion pumps such as Na,K-ATPase and Ca2-ATPase have been studied in great detail during the last decades. However, astonishingly little is known about the P5-ATPases and their actual function, despite their physiological importance in all eukaryotes. The current proposal focuses on substrate identification and structural characterization of P5-ATPases, as well as investigations of their cellular interaction network. Human P5-ATPases (ATP13A1 through 5, ATP13A2 also known as PARK9) and the yeast orthologues Spf1p and Ypk9p will be subjects of this study. Target proteins will be expressed in their native host (yeast or HEK cells) and subsequently purified and used for activity assays, structural studies, and identification of interaction partners. Native mass spectrometry will identify bound substrates and cofactors, and activity studies will elucidate structure-function relationships. 3D-structures obtained by single-particle cryo-electron microscopy (cryo-EM) and/or X-ray crystallography will reveal catalytic mechanisms and mutational effects. Structural and functional characterization of P5-ATPases can therefore serve as a basis for understanding molecular mechanisms of e.g. neurodegenerative and cognitive disorders and guide novel strategies in disease treatments and drug discovery. Using my profound experience from my PhD with crystallography of biotechnologically relevant proteins, I wish to pursue a postdoc focused on membrane proteins with a strong potential in molecular medicine and to expand my knowledge of methods in structural biology and molecular cell biology, in particular cryo-EM.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYP5" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYP5" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ACES (2019)

Antarctic Cyclones: Expression in Sea Ice

Read More  

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

INTERGLP1 (2020)

Dissecting GLP-1 receptor internalization pathways using genetic and pharmacological tools

Read More