Explore the words cloud of the hyP5 project. It provides you a very rough idea of what is the project "hyP5" about.
The following table provides information about the project.
Coordinator |
AARHUS UNIVERSITET
Organization address contact info |
Coordinator Country | Denmark [DK] |
Total cost | 219˙312 € |
EC max contribution | 219˙312 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2019 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2021 |
Duration (year-month-day) | from 2021-09-01 to 2023-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | AARHUS UNIVERSITET | DK (AARHUS C) | coordinator | 219˙312.00 |
P5-ATPases are conserved in all eukaryotes and malfunctions in human are associated with severe neurological diseases, such as familial early-onset parkinsonism and autism/language disorders, and with phenotypical traits in yeasts. They belong to the P-type ATPase superfamily, which encompass a range of essential membrane transporters for ions and lipids. Ion pumps such as Na,K-ATPase and Ca2-ATPase have been studied in great detail during the last decades. However, astonishingly little is known about the P5-ATPases and their actual function, despite their physiological importance in all eukaryotes. The current proposal focuses on substrate identification and structural characterization of P5-ATPases, as well as investigations of their cellular interaction network. Human P5-ATPases (ATP13A1 through 5, ATP13A2 also known as PARK9) and the yeast orthologues Spf1p and Ypk9p will be subjects of this study. Target proteins will be expressed in their native host (yeast or HEK cells) and subsequently purified and used for activity assays, structural studies, and identification of interaction partners. Native mass spectrometry will identify bound substrates and cofactors, and activity studies will elucidate structure-function relationships. 3D-structures obtained by single-particle cryo-electron microscopy (cryo-EM) and/or X-ray crystallography will reveal catalytic mechanisms and mutational effects. Structural and functional characterization of P5-ATPases can therefore serve as a basis for understanding molecular mechanisms of e.g. neurodegenerative and cognitive disorders and guide novel strategies in disease treatments and drug discovery. Using my profound experience from my PhD with crystallography of biotechnologically relevant proteins, I wish to pursue a postdoc focused on membrane proteins with a strong potential in molecular medicine and to expand my knowledge of methods in structural biology and molecular cell biology, in particular cryo-EM.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYP5" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "HYP5" are provided by the European Opendata Portal: CORDIS opendata.