Explore the words cloud of the MesoSi-CO2 project. It provides you a very rough idea of what is the project "MesoSi-CO2" about.
The following table provides information about the project.
Coordinator |
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU
Organization address contact info |
Coordinator Country | Norway [NO] |
Total cost | 202˙158 € |
EC max contribution | 202˙158 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2019 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2020 |
Duration (year-month-day) | from 2020-10-01 to 2022-09-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU | NO (TRONDHEIM) | coordinator | 202˙158.00 |
Increasing carbon dioxide (CO2) concentrations in our atmosphere are becoming evident and are having a tremendous effect on the global temperature rise. Growing awareness of greenhouse gas emissions has led to the implementation of chemical CO2 utilization technologies. Tri-reforming of methane (TRM) can not only produce synthesis gas (CO H2) with desired H2/CO ratios (1.5–2.0) but can also eliminate carbon formation which is a serious problem in reforming of methane. Moreover, TRM allows converting CO2 directly from flue gases when applied in natural gas-fired power plants. However, a lack of catalysts able to operate efficiently with sufficient long-term stability hinders the development of the process. In this project, the proposed solution is to design a Ni-based mesoporous silica resistant to sintering and carbon formation and able to perform superior catalytic conversion of CO2. The synthesis of catalysts takes advantage of renewable bio-sources, zero-cost industrial waste and assistance of microwaves. The latter is applied to reduce power usage. The catalytic measurements will be performed with gas composition typical of flue gases from a natural-gas-fired power plant. The materials will be characterized by methods dedicated to examine physico-chemical features, such as XRD, N2 sorption, TPR, H2 chemisorption, TGA/DSC-MS, and XPS. The catalysts with optimal properties will be studied by steady-state isotopic transient kinetic analysis (SSITKA). Moreover, density functional theory (DFT) will be carried out to support the experiments. The understanding of possible deactivation mechanisms (carbon formation, sintering, selectivity towards side reactions) will be studied during the Secondment stay (Sorbonne Université, France). Operando XAS-XRD measurements will be performed to reveal the nature of active sites on the tri-reforming catalysts.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MESOSI-CO2" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "MESOSI-CO2" are provided by the European Opendata Portal: CORDIS opendata.