Opendata, web and dolomites

VASCFLAP

A new reconstructing technique using tissue engineering methods to create an engineered autologous vascularized tissue flap

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 VASCFLAP project word cloud

Explore the words cloud of the VASCFLAP project. It provides you a very rough idea of what is the project "VASCFLAP" about.

later    construct    implanted    moved    portfolio    quality    defects    morbidity    scarification    adjacent    tissue    uses    breast    cells    risks    scant    polymeric    thousands    wall    implantation    autologous    seeded    once    feasibility    vitro    name    technique    vascularized    plan    establishing    donor    vessels    abdominal    contain    improves    reconstruction    describe    treatment    scaffold    involve    injured    thickness    muscle    disadvantages    repair    skin    property    harvesting    biomaterial    performed    transfer    minimal    transplant    intact    life    lifted    reconstructive    severe    complicated    idea    cancer    supply    model    postoperative    alone    patients    flap    alternative    patient    free    isolated    surgical    human    full    intellectual    animal    overcome    complete    burns    engineered    reduces    site    blood    consequence    cultured    skinsubcutisfasciamuscle    network    possibility    defect    market    niche    surgery    axial    trauma   

Project "VASCFLAP" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 147˙500 €
 EC max contribution 147˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-PoC
 Funding Scheme ERC-POC
 Starting year 2015
 Duration (year-month-day) from 2015-04-01   to  2016-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 147˙500.00

Map

 Project objective

'Abdominal wall defects are often the consequence of severe trauma, cancer treatment and burns. These defects involve a significant loss of tissue, and often require surgical reconstruction where tissue is lifted from the patient's donor site and moved to his injured site with an intact blood supply (autologous muscle free flap). The current transfer surgery is complicated and involved with donor-site morbidity after tissue harvesting, and scant availability. We propose a robust engineered transplant performed by a novel reconstruction technique to overcome these disadvantages. The proposed transplant uses an alternative biomaterial implantation, offering the possibility to repair a full-thickness defect of the abdominal wall without the need to transfer tissue (skinsubcutisfasciamuscle) from another site and minimal postoperative scarification (skin only). We name this technique 'an Engineered Autologous Vascularized Axial Flap'. The key idea of this approach is the use of a polymeric scaffold upon which human cells will be seeded. The engineered tissue cultured in vitro will contain also a network of blood vessels. Then, this engineered construct will be implanted around large blood vessels adjacent to the injured site. Once highly vascularized, it will be possible to transfer the implanted engineered vascularized construct as a flap for covering the defects. Once developed, this autologous cost-effective engineered tissue product may be used in reconstructive surgery of the abdominal wall and breast (thousands of cases in the EU alone) which improves the patients’ quality of life and reduces surgical costs and risks. Here we describe a plan to develop this product by identifying the most cost-effective niche where we can go to market in. We plan to complete a set of feasibility studies in large animal model using human cells (which could later be isolated from the patient = autologous cells) and proceed establishing our portfolio of intellectual property.'

 Publications

year authors and title journal last update
List of publications.
2016 Alina Freiman, Yulia Shandalov, Dekel Rozenfeld, Erez Shor, Sofia Segal, Dror Ben-David, Shai Meretzki, Dana Egozi, Shulamit Levenberg
Adipose-derived endothelial and mesenchymal stem cells enhance vascular network formation on three-dimensional constructs in vitro
published pages: , ISSN: 1757-6512, DOI: 10.1186/s13287-015-0251-6
Stem Cell Research & Therapy 7/1 2019-07-22

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VASCFLAP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VASCFLAP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

RECON (2019)

Reprogramming Conformation by Fluorination: Exploring New Areas of Chemical Space

Read More  

ECOLBEH (2020)

The Ecology of Collective Behaviour

Read More  

GAIA (2020)

A Genomic and Macroevolutionary Approach to Studying Diversification in an Insect-Plant Arms Race

Read More