Opendata, web and dolomites

SAT STABILIS

Nonlinear Sampled-data Attitude Stabilization of Underactuated Spacecraft

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SAT STABILIS project word cloud

Explore the words cloud of the SAT STABILIS project. It provides you a very rough idea of what is the project "SAT STABILIS" about.

laws    never    angular    secondment    outcomes    market    axis    though    ad    investigations    mode    manifest    purpose    nonlinear    multirate    torques    operation    time    algorithms    permitting    computability    feedback    inevitably    data    industrial    additional    board    standard    underlying    finite    extensive    digital    kept    attitude    global    sampling    destabilization    actuator    stabilizing    depending    digitally    hoc    safe    models    nonholonomic    admitting    restrictions    performance    stakeholders    impose    space    remaining    discontinuous    theoretical    innovative    discrete    spacecraft    dictated    degradation    continuous    small    smooth    quality    simulations    equivalent    orbit    classes    beginning    underactuated    sampled    solutions    minimum    methodology    effect    software    mechanical    computer    momenta    varying    satellites    fail    applicability    follow    redundancy    reliability    symmetricity    controller    experimental    stabilization    foreseen    demonstration    assured    platform   

Project "SAT STABILIS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA 

Organization address
address: Piazzale Aldo Moro 5
city: ROMA
postcode: 185
website: www.uniroma1.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Project website http://www.dis.uniroma1.it/
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2015
 Duration (year-month-day) from 2015-10-01   to  2017-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA IT (ROMA) coordinator 180˙277.00

Map

 Project objective

Space stakeholders manifest an increasing interest in small satellites dictated by reduced, global costs and “time to market”. Since redundancy is kept to a minimum, achieving attitude stabilization in actuator failure mode with the remaining control torques can offer a fail-safe operation mode, improving the reliability of the attitude control system. The, still open, underlying control problem is challenging, since the nonlinear underactuated system is nonholonomic, admitting only non-smooth stabilizing feedback. Depending on actuator type and additional restrictions on the symmetricity of the spacecraft or its angular momenta, non standard, discontinuous or time-varying solutions have been proposed. Though any continuous-time controller is inevitably implemented digitally on the on-board computer, leading to loss of performance or even destabilization, the effect of sampling is never considered in the state-of-the-art. The aim of the present proposal is to develop novel control algorithms for three-axis attitude stabilization of an underactuated spacecraft in actuator failure mode without significant performance degradation with the remaining control torques. To this purpose, we follow a sampled-data methodology that considers the sampling issues from the beginning in the design process. Theoretical investigations will be conducted for ad-hoc digital solutions based on equivalent discrete models, finite computability and multirate control laws, permitting to impose digital performance objectives that cannot be set in continuous-time. The quality of the innovative algorithms developed is assured by extensive software simulations and application on an experimental attitude control platform. In-orbit technology demonstration and testing, and exploitation of the research outcomes are the focus of the industrial secondment foreseen. The applicability of the results to general classes of underactuated mechanical systems and other related control problems is expected.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SAT STABILIS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SAT STABILIS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

UNMACRODYN (2019)

Uncertainty shocks, inflation dynamics and monetary policy

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More