Opendata, web and dolomites

Class II PI3K

Characterization of the signalling and physiological roles of the class II PI3Ks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Class II PI3K project word cloud

Explore the words cloud of the Class II PI3K project. It provides you a very rough idea of what is the project "Class II PI3K" about.

combination    traffic    implicated    group    coupled    cellular    thereof    hence    contrast    excellent    cell    class    downstream    action    vivo    global    genes    subclasses    roles    hits    lines    migration    beta    transduction    intracellular    c2    whereas    regulators    discovery    knockout    endo    mice    mechanism    interacting    delineate    endocytic    created    unknown    mouse    host    remained    membrane    drug    dependent    amongst    basis    recycling    constitutive    exocytosis    cancer    functions    physiological    knock    enigmatic    model    models    protein    kinases    decade    inactive    ago    expertise    cells    proteins    emerged    form    trafficking    influence    ideal    signalling    gene    kinase    poorly    regulation    pi3ks    signal    generate    lipid    pi3k    family    mutated    receptors    screen    initial    uncover    tools    laboratory    performed    unpublished    conditional    mammalian    eight    exploited    members    explore    messengers    alpha    phosphoinositide    biology   

Project "Class II PI3K" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: LONDON
postcode: WC1E 6BT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.ucl.ac.uk/cancer/research/department-oncology/cell-signalling-group
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-02-01   to  2018-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (LONDON) coordinator 183˙454.00

Map

 Project objective

Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that generate intracellular second messengers in signal transduction and membrane trafficking pathways and are important drug targets. This proposal seeks to delineate the roles and mechanism of action of a group of PI3Ks which have remained enigmatic ever since their discovery over a decade ago. The PI3K family comprises eight members in three subclasses. Class I PI3Ks signal downstream of growth factor and G protein-coupled receptors, are amongst the most commonly mutated genes in cancer and are being exploited as drug targets. The class II and III PI3Ks have in part emerged as regulators of membrane trafficking pathways but their physiological roles remain poorly understood. We aim to identify the physiological roles of the class II PI3K-C2α and β and to characterize the impact of their kinase activity on signalling pathways. To analyse the roles of class II PI3K activity in vivo, the Host Laboratory has created constitutive global and conditional knock-in kinase-inactive mice (unpublished). In contrast to PI3K gene knockout models, these mouse lines allow us to specifically address kinase-dependent functions and hence are an ideal model to evaluate the potential of class II PI3Ks as drug targets. The class II PI3K-C2α (C2α) is involved in endo- and exocytosis as well as endocytic recycling, whereas PI3K-C2β (C2β) has been implicated in cell migration. However, their influence on cellular signalling is unknown. As an initial approach, the Host Laboratory performed a screen for proteins interacting with C2α or C2β (unpublished). We will explore hits from this screen using the kinase-inactive knock-in mice and cells derived thereof as discovery tools. The combination of my expertise in membrane traffic and phosphoinositide regulation with the mouse and signalling studies of the Host Laboratory form an excellent and timely basis to uncover the roles of the class II PI3Ks in mammalian biology.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CLASS II PI3K" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CLASS II PI3K" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

HSQG (2020)

Higher Spin Quantum Gravity: Lagrangian Formulations for Higher Spin Gravity and Their Applications

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More