Explore the words cloud of the PVFIFTY project. It provides you a very rough idea of what is the project "PVFIFTY" about.
The following table provides information about the project.
Coordinator |
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Project website | http://www.imperial.ac.uk/ |
Total cost | 183˙454 € |
EC max contribution | 183˙454 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2014 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2015 |
Duration (year-month-day) | from 2015-05-01 to 2017-04-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE | UK (LONDON) | coordinator | 183˙454.00 |
Concentrator photovoltaic solar collectors have the potential to generate electricity at costs as low as 6¢/kWh, a price where they compete favourably with wholesale electricity prices. To achieve this, a solar cell with an efficiency in excess of 50% is required and will require considerable development over the present state of the art. In particular, a new semiconductor absorber layer with a 1eV band-gap will be required in addition to solar concentrations in excess of 1000X. The proposed research addresses both of these areas.
Preliminary work has identified the use of bismide semiconductors to achieve the required 1eV semiconductor junction. A 1eV GaAsBi0.062 layer can be grown that has only 0.6% mismatch to GaAs, as compared to conventional In0.3GaAs that introduces >2% mismatch. We will develop high-performance photovoltaic devices based on this material. We will characterise the optical and electronic structure of these new materials using spectroscopic ellipsometry and photo/electroreflectance. The nature and concentration of defects will be determined using time-resolved optical spectroscopy and correlated with solar cell performance data by extending existing computer models.
To achieve high efficiencies at high concentrations, it is necessary to reduce the resistive loss. Here, we propose to exploit lateral emission in tensile quantum well (QW) layers to provide a parallel radiative transport pathway that delivers photogenerated charges to the electrical contacts. A series of InGaP/InGaAsP QW test structures in compressive, tensile and unstrained configurations will be grown to control the directionality of emission, which will be confirmed using spectroscopic measurements. Concentrator solar cell device structures will be processed and the effective sheet resistivity evaluated using electroluminescent imaging. Front grid structures we be redesigned to account for radiative transport.
year | authors and title | journal | last update |
---|---|---|---|
2016 |
Alexander Mellor, Nicholas P. Hylton, Hubert Hauser, Tomos Thomas, Kan-Hua Lee, Yahya Al-Saleh, Vincenzo Giannini, Avi Braun, Josine Loo, Dries Vercruysse, Pol Van Dorpe, Benedikt Blasi, Stefan A. Maier, N. J. Ekins-Daukes Nanoparticle Scattering for Multijunction Solar Cells: The Tradeoff Between Absorption Enhancement and Transmission Loss published pages: 1678-1687, ISSN: 2156-3381, DOI: 10.1109/JPHOTOV.2016.2601944 |
IEEE Journal of Photovoltaics 6/6 | 2019-06-13 |
2017 |
A. Mellor, N.P. Hylton, S.A. Maier, N. Ekins-Daukes Interstitial light-trapping design for multi-junction solar cells published pages: 212-218, ISSN: 0927-0248, DOI: 10.1016/j.solmat.2016.09.005 |
Solar Energy Materials and Solar Cells 159 | 2019-06-13 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PVFIFTY" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "PVFIFTY" are provided by the European Opendata Portal: CORDIS opendata.