Explore the words cloud of the NEUROMITO project. It provides you a very rough idea of what is the project "NEUROMITO" about.
The following table provides information about the project.
Coordinator |
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Organization address contact info |
Coordinator Country | Germany [DE] |
Project website | https://brain.mpg.de/institute/external-funding.html |
Total cost | 159˙460 € |
EC max contribution | 159˙460 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2014 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2016 |
Duration (year-month-day) | from 2016-01-01 to 2017-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV | DE (Munich) | coordinator | 159˙460.00 |
Neurons are specialized cells with polarized morphology. Efficient function dictates that the molecular events crucial for synaptic communication are not centralized at the cell body but distributed to individual subcellular compartments - dendrites, dendritic spines, axons, presynaptic terminals. Local protein synthesis in dendrites is one such mechanism that plays a significant role in synaptic plasticity and memory. However, little is known on how the high-energy demands of local protein synthesis are met at dendrites and spines.Mitochondria, the 'energy houses' of cells, are found in great abundance in neurons. Mitochondria are associated with: nuclear-encoded messenger RNAs for local translation of great majority of mitochondrial proteins; non-coding RNAs for translational regulation of its protein abundance. To meet the local energy demands of protein synthesis, it is likely that mitochondria compartmentalize at dendritic regions and undergo dynamic changes in their proteome and transcriptome. My research project aims at elucidating the dynamics of mitochondria during high-energy demands of local protein synthesis. I will be performing experiments to examine mitochondrial compartmentalization in dendrites. Since simple fluorescence time-lapse imaging is not sensitive enough to visualize mitochondrial dynamics, I will use state-of-the-art imaging tools available in Dr. Erin Schuman’s lab for my experiments. I will also exploit the special neuron culture platforms, Microfluidic chambers, co-invented in the Schuman lab, for this purpose. In addition, I will be performing proteomic and transcriptomic analysis of mitochondria isolated from somata and neurites. To this end, I will use the shared protein mass spectometry facility of the Max Planck Institute for Brain Research and Biophysics for mitochondrial proteomics and the advanced RNA sequencing techniques employed in the Schuman group for mitochondrial transcriptomics.
year | authors and title | journal | last update |
---|---|---|---|
2017 |
Vidhya Rangaraju, Susanne tom Dieck, Erin M Schuman Local translation in neuronal compartments: how local is local? published pages: 693-711, ISSN: 1469-221X, DOI: 10.15252/embr.201744045 |
EMBO reports 18/5 | 2019-06-13 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEUROMITO" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "NEUROMITO" are provided by the European Opendata Portal: CORDIS opendata.