Opendata, web and dolomites

KREDs in GSBs

Directed evolution of ketoreductases in gel-shell beads

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 KREDs in GSBs project word cloud

Explore the words cloud of the KREDs in GSBs project. It provides you a very rough idea of what is the project "KREDs in GSBs" about.

alcohol    host    training    endeavour    performed    gsk    affords    engagements    university    pharmaceutical    campaigns    screening    members    directed    communicated    previously    enzymes    aid    career    professional    retained    concentrations    reactor    industry    excellent    meet    nature    alcohols    nad    beneficiary    detection    solution    enantioselectivity    12    optically    sensitive    intensive    matching    ketoreductases    laboratory    size    kreds    precise    green    gel    courses    public    small    broadening    exchanged    surrounded    enzyme    trials    opening    cambridge    flow    ketoreductase    secondary    bed    beads    tolerance    chemistry    manufacture    corresponding    contact    throughput    forefront    ideal    2020    maintained    final    library    derivatives    evolution    efficient    glaxosmithkline    readily    agarose    biocatalysis    cytometry    horizon    always    assays    continuous    scaled    ketones    791    industrial    series    secondment    macromolecular    pure    solvent    shell    molecules    limiting    reaction    2014    transfer    cofactor    substrate    group    skill    selective    individual   

Project "KREDs in GSBs" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.bioc.cam.ac.uk/hollfelder/members/laurens
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2017-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Optically pure secondary alcohols are required in the manufacture of many pharmaceutical products. Ketoreductases (KREDs) capable of reduction of ketones to the corresponding secondary alcohol have been improved through classical directed evolution campaigns but a limiting factor has always been the challenge of matching selection conditions to the final scaled-up reaction. Here we propose a solution to that problem. The Host group previously described the formation of gel-shell beads, agarose beads surrounded by a size-selective shell (Nature Chemistry 2014, 6:791). The beads allow screening of individual members of an enzyme library using flow cytometry. As small molecules can be readily exchanged, while enzymes are retained, the process not only affords precise control over selection conditions but also makes it ideal for continuous flow processes. To support this endeavour, sensitive assays for the high throughput detection of ketoreductase activity and enantioselectivity will be developed. Directed evolution will then be performed with selection for the efficient use of macromolecular derivatives of the NAD(P)H cofactor and improved tolerance to high substrate /solvent concentrations. Throughout the project, intensive contact will be maintained with Industrial Partner GlaxoSmithKline, leading up to flow bed reactor trials during a secondment. This project will provide the Beneficiary with an excellent training in biocatalysis, broadening his skill set and opening up new career opportunities in Europe’s growing Green Chemistry Sector. The Host laboratory is at the forefront of directed evolution of enzymes. Through the secondment at GSK, the Beneficiary will be able to transfer this technology to industry. Excellent training courses offered by the University of Cambridge will further aid his professional development. This project seeks to help Europe meet Part 12 of Horizon 2020, which is to be communicated through a well-planned series of Public Engagements.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "KREDS IN GSBS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "KREDS IN GSBS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More  

PROSPER (2019)

Politics of Rulemaking, Orchestration of Standards, and Private Economic Regulations

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More