Opendata, web and dolomites

KREDs in GSBs

Directed evolution of ketoreductases in gel-shell beads

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 KREDs in GSBs project word cloud

Explore the words cloud of the KREDs in GSBs project. It provides you a very rough idea of what is the project "KREDs in GSBs" about.

aid    skill    final    cofactor    macromolecular    molecules    detection    university    surrounded    gsk    group    enzymes    solvent    reaction    broadening    reactor    evolution    transfer    2020    directed    individual    secondment    industry    laboratory    readily    retained    beneficiary    communicated    enzyme    corresponding    screening    meet    solution    affords    nad    concentrations    engagements    ketoreductase    library    assays    substrate    forefront    series    members    biocatalysis    kreds    performed    tolerance    nature    cytometry    alcohols    career    pure    chemistry    horizon    precise    opening    2014    flow    beads    trials    secondary    professional    courses    bed    intensive    exchanged    enantioselectivity    green    size    manufacture    ketoreductases    maintained    excellent    gel    ideal    scaled    host    pharmaceutical    optically    agarose    previously    glaxosmithkline    throughput    continuous    industrial    contact    public    efficient    alcohol    always    derivatives    ketones    limiting    791    campaigns    cambridge    small    shell    matching    endeavour    sensitive    12    selective    training   

Project "KREDs in GSBs" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.bioc.cam.ac.uk/hollfelder/members/laurens
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2017-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Optically pure secondary alcohols are required in the manufacture of many pharmaceutical products. Ketoreductases (KREDs) capable of reduction of ketones to the corresponding secondary alcohol have been improved through classical directed evolution campaigns but a limiting factor has always been the challenge of matching selection conditions to the final scaled-up reaction. Here we propose a solution to that problem. The Host group previously described the formation of gel-shell beads, agarose beads surrounded by a size-selective shell (Nature Chemistry 2014, 6:791). The beads allow screening of individual members of an enzyme library using flow cytometry. As small molecules can be readily exchanged, while enzymes are retained, the process not only affords precise control over selection conditions but also makes it ideal for continuous flow processes. To support this endeavour, sensitive assays for the high throughput detection of ketoreductase activity and enantioselectivity will be developed. Directed evolution will then be performed with selection for the efficient use of macromolecular derivatives of the NAD(P)H cofactor and improved tolerance to high substrate /solvent concentrations. Throughout the project, intensive contact will be maintained with Industrial Partner GlaxoSmithKline, leading up to flow bed reactor trials during a secondment. This project will provide the Beneficiary with an excellent training in biocatalysis, broadening his skill set and opening up new career opportunities in Europe’s growing Green Chemistry Sector. The Host laboratory is at the forefront of directed evolution of enzymes. Through the secondment at GSK, the Beneficiary will be able to transfer this technology to industry. Excellent training courses offered by the University of Cambridge will further aid his professional development. This project seeks to help Europe meet Part 12 of Horizon 2020, which is to be communicated through a well-planned series of Public Engagements.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "KREDS IN GSBS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "KREDS IN GSBS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PTOoC (2019)

Plug-n-Play Tool-kit of Organ-on-Chips

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

DEAP (2019)

Development of Epithelium Apical Polarity: Does the mechanical cell-cell adhesions play a role?

Read More