Opendata, web and dolomites

KREDs in GSBs

Directed evolution of ketoreductases in gel-shell beads

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 KREDs in GSBs project word cloud

Explore the words cloud of the KREDs in GSBs project. It provides you a very rough idea of what is the project "KREDs in GSBs" about.

glaxosmithkline    series    alcohol    ideal    substrate    agarose    continuous    molecules    detection    beads    always    small    surrounded    trials    industry    engagements    ketoreductase    affords    gsk    laboratory    size    retained    training    enzyme    tolerance    precise    solvent    gel    cofactor    limiting    optically    shell    host    beneficiary    macromolecular    members    alcohols    screening    endeavour    matching    concentrations    flow    pure    previously    bed    evolution    nad    2020    2014    university    directed    secondary    contact    reactor    exchanged    aid    performed    biocatalysis    library    courses    secondment    efficient    pharmaceutical    manufacture    scaled    final    professional    broadening    cambridge    career    green    skill    individual    derivatives    horizon    maintained    enantioselectivity    meet    enzymes    throughput    reaction    ketoreductases    cytometry    public    excellent    sensitive    nature    791    opening    campaigns    selective    group    ketones    forefront    communicated    kreds    readily    corresponding    industrial    assays    chemistry    12    transfer    solution    intensive   

Project "KREDs in GSBs" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.bioc.cam.ac.uk/hollfelder/members/laurens
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2017-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 183˙454.00

Map

 Project objective

Optically pure secondary alcohols are required in the manufacture of many pharmaceutical products. Ketoreductases (KREDs) capable of reduction of ketones to the corresponding secondary alcohol have been improved through classical directed evolution campaigns but a limiting factor has always been the challenge of matching selection conditions to the final scaled-up reaction. Here we propose a solution to that problem. The Host group previously described the formation of gel-shell beads, agarose beads surrounded by a size-selective shell (Nature Chemistry 2014, 6:791). The beads allow screening of individual members of an enzyme library using flow cytometry. As small molecules can be readily exchanged, while enzymes are retained, the process not only affords precise control over selection conditions but also makes it ideal for continuous flow processes. To support this endeavour, sensitive assays for the high throughput detection of ketoreductase activity and enantioselectivity will be developed. Directed evolution will then be performed with selection for the efficient use of macromolecular derivatives of the NAD(P)H cofactor and improved tolerance to high substrate /solvent concentrations. Throughout the project, intensive contact will be maintained with Industrial Partner GlaxoSmithKline, leading up to flow bed reactor trials during a secondment. This project will provide the Beneficiary with an excellent training in biocatalysis, broadening his skill set and opening up new career opportunities in Europe’s growing Green Chemistry Sector. The Host laboratory is at the forefront of directed evolution of enzymes. Through the secondment at GSK, the Beneficiary will be able to transfer this technology to industry. Excellent training courses offered by the University of Cambridge will further aid his professional development. This project seeks to help Europe meet Part 12 of Horizon 2020, which is to be communicated through a well-planned series of Public Engagements.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "KREDS IN GSBS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "KREDS IN GSBS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COR1-TCELL (2019)

Analysis of the role for coronin 1-dependent cell density signalling in T-cell homeostasis

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More