Opendata, web and dolomites

MOLMIC

Molecular Biology of Sulfide-Oxidizing Nitrate-Reducing Microorganisms Involved in Microbiologically-Influenced Corrosion

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MOLMIC project word cloud

Explore the words cloud of the MOLMIC project. It provides you a very rough idea of what is the project "MOLMIC" about.

vary    bacteria    sulfide    metabolisms    ecophysiological    sulfur    injection    molecular    isolated    ian    academic    skills    industry    petroleum    emerge    sulfate    diagnostics    mediated    acquired    communities    dosing    cultures    removes    newcastle    uk    adjusting    microbial    prof    proposes    molmic    reducing    lahme    toxic    bioengineering    corrosive    usually    transcriptomic    link    countermeasures    collaborations    metabolism    sven    techniques    ratio    microbiologically    risk    suggests    university    strategy    electrochemical    oxidizing    oil    reports    sonrb    influenced    mic    microbiology    predictive    prevent    expand    rates    biology    srb    billion    dosage    head    depending    corrosion    gathering    expression    germany    physiology    souring    gas    h2s    enrichments    generation    linked    sour    monitoring    nitrate    researcher    gene    dr    strategies    independent    genomic    appropriately    understand    industrial    sequencing    intermediates    genetic    oxidation    incomplete    microorganisms   

Project "MOLMIC" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF NEWCASTLE UPON TYNE 

Organization address
address: KINGS GATE
city: NEWCASTLE UPON TYNE
postcode: NE1 7RU
website: http://www.ncl.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.researchgate.net/project/Molecular-Biology-of-Sulfide-Oxidizing-Nitrate-Reducing-Microorganisms-Involved-in-Microbiologically-Influenced-Corrosion-MOLMIC
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-01-06   to  2018-01-05

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF NEWCASTLE UPON TYNE UK (NEWCASTLE UPON TYNE) coordinator 183˙454.00

Map

 Project objective

Dr. Sven Lahme proposes to work with Prof. Ian Head at Newcastle University, UK, to study the Molecular Biology of Sulfide-Oxidizing Nitrate-Reducing Microorganisms Involved in Microbiologically-Influenced Corrosion (MOLMIC). Corrosion is a multi-billion Euro problem for the oil and gas industry. Microbiologically-influenced corrosion (MIC) in this sector is usually linked to souring of oil fields due to production of toxic and corrosive H2S by sulfate-reducing bacteria (SRB). Injection of nitrate into sour oil fields is a bioengineering strategy, which removes H2S by promoting sulfide-oxidizing nitrate-reducing bacteria (soNRB). However, recent reports involved soNRB in MIC due to incomplete oxidation of H2S to corrosive sulfur intermediates. The end products of soNRB metabolism vary depending on the ratio of sulfide to nitrate. This suggests that a predictive understanding of soNRB metabolism and appropriately adjusting the nitrate dosage can prevent the risk for soNRB-mediated MIC. MOLMIC will investigate the ecophysiological role of soNRB in oil field corrosion by using isolated cultures, specific enrichments and complex communities. It aims to i) understand the sulfur metabolism of oil field soNRB by gathering genomic and transcriptomic information through next-generation sequencing, ii) link different soNRB metabolisms to corrosion by monitoring corrosion rates and gene expression under various conditions and iii) evaluate soNRB MIC and countermeasures in complex communities by testing different nitrate dosing strategies and predictive genetic diagnostics. Dr. Lahme will expand his skills in microbial physiology and molecular biology acquired in Germany and will be introduced to petroleum microbiology, bioengineering and electrochemical techniques. New academic and industrial collaborations will emerge, which are both essential for becoming an independent and leading researcher.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MOLMIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MOLMIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More  

EVENTS (2020)

Affective work-related daily events, and changing characteristics of the work context: New challenges for management practices to deliver employees’ well-being and workplace performance

Read More  

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More