Opendata, web and dolomites

MOLMIC

Molecular Biology of Sulfide-Oxidizing Nitrate-Reducing Microorganisms Involved in Microbiologically-Influenced Corrosion

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MOLMIC project word cloud

Explore the words cloud of the MOLMIC project. It provides you a very rough idea of what is the project "MOLMIC" about.

microorganisms    linked    usually    petroleum    genomic    cultures    gene    depending    transcriptomic    reports    bioengineering    influenced    sulfur    microbiologically    oxidation    monitoring    academic    sonrb    independent    toxic    skills    oil    enrichments    srb    molmic    intermediates    genetic    industrial    diagnostics    newcastle    electrochemical    germany    gas    link    h2s    removes    appropriately    sulfate    strategies    generation    vary    suggests    emerge    metabolism    sven    sulfide    reducing    dr    techniques    lahme    countermeasures    collaborations    prof    corrosive    prevent    expression    understand    adjusting    corrosion    sequencing    mic    metabolisms    isolated    acquired    industry    ratio    billion    ecophysiological    predictive    dosage    expand    bacteria    proposes    oxidizing    physiology    incomplete    biology    dosing    ian    strategy    molecular    uk    nitrate    mediated    researcher    gathering    souring    injection    rates    sour    head    risk    microbial    communities    university    microbiology   

Project "MOLMIC" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF NEWCASTLE UPON TYNE 

Organization address
address: KINGS GATE
city: NEWCASTLE UPON TYNE
postcode: NE1 7RU
website: http://www.ncl.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://www.researchgate.net/project/Molecular-Biology-of-Sulfide-Oxidizing-Nitrate-Reducing-Microorganisms-Involved-in-Microbiologically-Influenced-Corrosion-MOLMIC
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-01-06   to  2018-01-05

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF NEWCASTLE UPON TYNE UK (NEWCASTLE UPON TYNE) coordinator 183˙454.00

Map

 Project objective

Dr. Sven Lahme proposes to work with Prof. Ian Head at Newcastle University, UK, to study the Molecular Biology of Sulfide-Oxidizing Nitrate-Reducing Microorganisms Involved in Microbiologically-Influenced Corrosion (MOLMIC). Corrosion is a multi-billion Euro problem for the oil and gas industry. Microbiologically-influenced corrosion (MIC) in this sector is usually linked to souring of oil fields due to production of toxic and corrosive H2S by sulfate-reducing bacteria (SRB). Injection of nitrate into sour oil fields is a bioengineering strategy, which removes H2S by promoting sulfide-oxidizing nitrate-reducing bacteria (soNRB). However, recent reports involved soNRB in MIC due to incomplete oxidation of H2S to corrosive sulfur intermediates. The end products of soNRB metabolism vary depending on the ratio of sulfide to nitrate. This suggests that a predictive understanding of soNRB metabolism and appropriately adjusting the nitrate dosage can prevent the risk for soNRB-mediated MIC. MOLMIC will investigate the ecophysiological role of soNRB in oil field corrosion by using isolated cultures, specific enrichments and complex communities. It aims to i) understand the sulfur metabolism of oil field soNRB by gathering genomic and transcriptomic information through next-generation sequencing, ii) link different soNRB metabolisms to corrosion by monitoring corrosion rates and gene expression under various conditions and iii) evaluate soNRB MIC and countermeasures in complex communities by testing different nitrate dosing strategies and predictive genetic diagnostics. Dr. Lahme will expand his skills in microbial physiology and molecular biology acquired in Germany and will be introduced to petroleum microbiology, bioengineering and electrochemical techniques. New academic and industrial collaborations will emerge, which are both essential for becoming an independent and leading researcher.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MOLMIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MOLMIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

Migration Ethics (2019)

Migration Ethics

Read More