Opendata, web and dolomites

CoMoQuant SIGNED

Correlated Molecular Quantum Gases in Optical Lattices

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CoMoQuant project word cloud

Explore the words cloud of the CoMoQuant project. It provides you a very rough idea of what is the project "CoMoQuant" about.

atomic    direction    pairs    synthesize    body    plane    microscopy    fraction    freedom    transport    fermions    engineered    degenerate    geometry    dimensions    mole    optical    confined    near    experiments    lattice    dipolar    physical    molecular    suited    transfer    engineering    coherent    perform    thousands    mimic    polar    parallel    either    fermionic    detection    atom    forms    pro    dynamics    dimensional    unity    cule    paring    probe    simulator    filling    dy    dipole    cs    spin    created    single    dimer    full    interactions    prepare    simulations    local    mott    correlated    samples    perfectly    fermion    create    mo    readout    particles    phases    magnetism    boson    superfluidity    namical    lecular    molecule    fidelity    planar    quantum    ground    gas    precursors    bosons    entropy    molec    arise    molecules    carry    ular    gases    disorder    interaction    situations    techniques    kcs    insulating    bosonic    de    band    view    grees    posal   

Project "CoMoQuant" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET INNSBRUCK 

Organization address
address: INNRAIN 52
city: INNSBRUCK
postcode: 6020
website: http://www.uibk.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 2˙356˙117 €
 EC max contribution 2˙356˙117 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET INNSBRUCK AT (INNSBRUCK) coordinator 2˙356˙117.00

Map

 Project objective

In a quantum engineering approach we aim to create strongly correlated molecular quantum gases for polar molecules confined in an optical lattice to two-dimensional geometry with full quantum control of all de-grees of freedom with single molecule control and detection. The goal is to synthesize a high-fidelity molec-ular quantum simulator with thousands of particles and to carry out experiments on phases and dynamics of strongly-correlated quantum matter in view of strong long-range dipolar interactions. Our choice of mole-cule is the KCs dimer, which can either be a boson or a fermion, allowing us to prepare and probe bosonic as well as fermionic dipolar quantum matter in two dimensions. Techniques such as quantum-gas microscopy, perfectly suited for two-dimensional systems, will be applied to the molecular samples for local control and local readout. The low-entropy molecular samples are created out of quantum degenerate atomic samples by well-established coherent atom paring and coherent optical ground-state transfer techniques. Crucial to this pro-posal is the full control over the molecular sample. To achieve near-unity lattice filling fraction for the mo-lecular samples, we create two-dimensional samples of K-Cs atom pairs as precursors to molecule formation by merging parallel planar systems of K and Cs, which are either in a band-insulating state (for the fermions) or in Mott-insulating state (for the bosons), along the out-of-plane direction. The polar molecular samples are used to perform quantum simulations on ground-state properties and dy-namical properties of quantum many-body spin systems. We aim to create novel forms of superfluidity, to investigate into novel quantum many-body phases in the lattice that arise from the long-range molecular dipole-dipole interaction, and to probe quantum magnetism and its dynamics such as spin transport with single-spin control and readout. In addition, disorder can be engineered to mimic real physical situations.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMOQUANT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMOQUANT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More