Opendata, web and dolomites

MagicTin

Exploring the shell structure of exotic Sn isotopes with an Active Target

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MagicTin" data sheet

The following table provides information about the project.

Coordinator
KATHOLIEKE UNIVERSITEIT LEUVEN 

Organization address
address: OUDE MARKT 13
city: LEUVEN
postcode: 3000
website: www.kuleuven.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 172˙800 €
 EC max contribution 172˙800 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-01-01   to  2017-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KATHOLIEKE UNIVERSITEIT LEUVEN BE (LEUVEN) coordinator 172˙800.00

Map

 Project objective

The MagicTin proposal aims at the use of a new generation active target detector (ACTAR) to study the shell evolution in exotic Sn isotopes. The goal of this project is to commission the ACTAR demonstrator, optimizing it for the neutron-rich beams produced at the forthcoming second generation radioactive ion beam facilities. Worldwide, the availability of exotic ion beams is providing new insight on the evolution of nuclear shells far from beta stability, advancing our understanding of the nuclear force. Measuring transfer reactions, in particular 134Sn(d,p)135Sn, will allow to search for signatures of the existence of a new sub-shell closure at N=90 and to study, in this very neutron-rich region, the nucleon-nucleon interaction in the nuclear medium coupled to the continuum. Experiments where conventional techniques cannot be employed due to low-beam intensities will become feasible using the ACTAR device. This consists of a time projection chamber where the gas is used both as target material and as reaction products detector. Thanks to the fact that the interaction point lies inside the gas volume, very low detection thresholds can be obtained. Detection efficiency is also remarkably improved and this is essential when dealing with low intensity exotic beams. The beneficiary institution is deeply involved in the ACTAR development and the supervisor is managing an ERC project that aims at coupling ACTAR with gamma-ray detectors. Through the MagicTin project, the experienced researcher will have the possibility to learn the ACTAR technology, deeply contributing to the setup of the device for the exotic Sn physics case. Moreover, the experienced researcher (ER) will exploit his experience on scintillators to contribute in the development of the gamma-ray detectors. The ER will be also in charge of a commissioning experiment with the 120Sn stable beam: this task will allow him to re-enforce his research independence and maturity.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAGICTIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAGICTIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EXPAND (2019)

Examining pan-neotropical diasporas

Read More  

TGL (2019)

Transition Governance and Law

Read More  

MSOPGDM (2019)

Mechanistic studies of prokaryotic genome defense mechanisms

Read More