Opendata, web and dolomites

Ultroslag

A new integrated sustainable processing system for ‘metal from slag’ recovery with higher technical, economic, energy and environmental performance than existing recovery processes.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Ultroslag project word cloud

Explore the words cloud of the Ultroslag project. It provides you a very rough idea of what is the project "Ultroslag" about.

particles    huge    carbon    materials    components    combined    house       uniform    add    waste    normal    thermal    recovered    finest    nfm    extremely    impurities    metallic    thro    economies    ferrous    export    separate    forms    endusers    smelting    originally    slag    emissions    glass    ultimate    expensive    engineering    metal    size    rapid    aggregate    sharps    cut    oxides    selectively    contains    smelters    million    free    crust    heavy    saved    accelerated    relatively    re    losing    landfill    sand    fine    market    temp    recovery    launch    leaching    melt    break    separation    melting    strategic    energy    water    benefits    courses    fraction    weight    alloyed    miles    crushing    un    recycling    saving    globally    tpa    innovative    alloys    option    97    refining    society    idea    implosion    70    economic    recycle    mechanical    vibration    metals    protective    ultrasonic    burden    reducing    civil    sieving    commercially    techniques   

Project "Ultroslag" data sheet

The following table provides information about the project.

Coordinator
ULTROMEX LTD 

Organization address
address: MERSEY WHARF BUSINESS PARK DOCK ROAD SOUTH WIRRAL
city: MERSEYSIDE
postcode: CH62 4SF
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.ultromex.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.5. (SOCIETAL CHALLENGES - Climate action, Environment, Resource Efficiency and Raw Materials)
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2014
 Funding Scheme SME-1
 Starting year 2014
 Duration (year-month-day) from 2014-10-01   to  2015-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ULTROMEX LTD UK (MERSEYSIDE) coordinator 50˙000.00

Map

 Project objective

Slag is a by-product of metal smelting, and ~3.5 million tpa are produced globally in refining Non Ferrous Metals (NFM) and making alloys. Slag contains impurities and forms a protective crust of non-metallic & metallic oxides, and contains significant ‘free’ & alloyed metal (from 10 to 70% by weight). While slag can be used as aggregate, there are increasing concerns over ‘leaching’ of heavy metals into water courses from using these materials in civil engineering. While some metal can be recovered by re-melting slag (at very high temp), this is extremely expensive with very high energy burden which often makes recovery un-economic, but necessary. Landfill of slag is increasingly not an option. Our idea is to use a relatively new technology called ‘implosion’ to selectively break down and separate non-metallic components of slag from metallic particles. This will be combined with ultrasonic vibration sieving for accelerated recovery of metal from the finest fraction. This novel technology was originally developed to recycle waste glass by reducing it to fine ‘sand’, with uniform size and no ‘sharps’ compared to normal crushing techniques. This technology has not been applied commercially to other materials. Benefits to partners, endusers & society could be: • Rapid recovery of more metal from slag at relatively low cost • Strategic control of metal recovered rather than losing control thro’ export to ‘low cost’ economies • Enable smelters to recycle slag in-house, increasing their ‘Value Add’ while reducing ‘recycle-miles’ • 97% energy saving thro’ low cost mechanical separation rather than very high temp. melt recycling • Huge cut in carbon emissions from thermal energy saved and ‘recycle-miles’ saved

The ultimate goal is to launch a new process in the market, through an innovative application of a relatively new technology to selectively break down the non-metallic components of slag from the metallic particles.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ULTROSLAG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ULTROSLAG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.5.;H2020-EU.2.3.1.)

EPIC (2017)

Environmentally Friendly Recycled Plastic Floors in Containers

Read More  

CleanCoat (2017)

Development of eco-friendly architectural coil coatings for clean buildings and pollution-free air

Read More  

PBTech (2016)

Combined Plasma Biotrickling system for treating industrial VOC emissions

Read More