Opendata, web and dolomites

QuantGeomLangTFT SIGNED

The Quantum Geometric Langlands Topological Field Theory

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 QuantGeomLangTFT project word cloud

Explore the words cloud of the QuantGeomLangTFT project. It provides you a very rough idea of what is the project "QuantGeomLangTFT" about.

arbitrary    degenerate    respectively    connection    techniques    quantum    unity    algebraic    fundamental    elliptic    algebra    construction    existence    mapping    surfaces    verlinde    realize    punctured    deep    received    parameterizing    qgl    actions    torus    invariants    daha    deal    light    algebras    unified    equipped    extension    hecke    special    unrelated    module    analogs    class    operators    uncovered    representations    knot    rasmussen    topological    leverage    form    spherical    moduli    closed    quantized    group    differential    quantization    oblomkov    obtain    springer    spaces    manifolds    celebrated    shine    thereby    interesting    yields    previously    shedding    theory    first    witten    variety    double    geometry    representation    polynomial    solving    constructing    knots    computing    dimensional    groups    geometric    cherednik    modern    connections    conjectural    surface    langlands    construct    flat    dubbed    character    genus    once    quantizations    shende    root    rational    varieties    affine    recover    bundles   

Project "QuantGeomLangTFT" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF EDINBURGH 

Organization address
address: OLD COLLEGE, SOUTH BRIDGE
city: EDINBURGH
postcode: EH8 9YL
website: www.ed.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.maths.ed.ac.uk/
 Total cost 1˙100˙947 €
 EC max contribution 1˙100˙947 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-STG
 Funding Scheme ERC-STG
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2020-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EDINBURGH UK (EDINBURGH) coordinator 1˙100˙947.00

Map

 Project objective

We will use modern techniques in derived algebraic geometry, topological field theory and quantum groups to construct quantizations of character varieties, moduli spaces parameterizing G-bundles with flat connection on a surface. We will leverage our construction to shine new light on the geometric representation theory of quantum groups and double affine Hecke algebras (DAHA's), and to produce new invariants of knots and 3-manifolds.

Our previous research has uncovered strong evidence for the existence of a novel construction of quantum differential operators -- and their extension to higher genus surfaces -- in terms of a four-dimensional topological field theory, which we have dubbed the Quantum Geometric Langlands (QGL) theory. By construction, the QGL theory of a surface yields a quantization of its character variety; quantum differential operators form just the first interesting example. We thus propose the following long-term projects:

1. Build higher genus analogs of DAHA's, equipped with mapping class group actions -- thereby solving a long open problem -- by computing QGL theory of arbitrary surfaces; recover quantum differential operators and the (non-degenerate, spherical) DAHA of G, respectively, from the once-punctured and closed two-torus. 2. Obtain a unified construction of both the quantized A-polynomial and the Oblomkov-Rasmussen-Shende invariants, two celebrated -- and previously unrelated -- conjectural knot invariants which have received a great deal of attention. 3. By studying special features of our construction when the quantization parameter is a root of unity, realize the Verlinde algebra as a module over the DAHA, shedding new light on fundamental results of Cherednik and Witten. 4. Develop genus one, and higher, quantum Springer theory -- a geometric approach to constructing representations of quantum algebras -- with deep connections to rational and elliptic Springer theory, and geometric Langlands program.

 Publications

year authors and title journal last update
List of publications.
2017 Andrea Appel, Sachin Gautam
An explicit isomorphism between quantum and classical sl(n)
published pages: , ISSN: , DOI:
2020-01-24
2018 Samuelson, Peter; Cooper, Benjamin
The Hall Algebras of Surfaces I
published pages: , ISSN: 1474-7480, DOI:
Journal of the Institute of Mathematics of Jussieu to appear 2020-01-24
2016 Martina Balagovic, David Jordan
The Harish-Chandra isomorphism for quantum GL_2
published pages: , ISSN: 1661-6952, DOI:
Journal of Noncommutative Geometry to appear 2020-01-24
2018 Andrea Appel, Valerio Toledano-Laredo
Coxeter categories and quantum groups
published pages: , ISSN: , DOI:
2020-01-24
2016 Sabin Cautis, Aaron D. Lauda, Anthony Licata, Peter Samuelson, Joshua Sussan
The Elliptic Hall algebra and the deformed Khovanov Heisenberg category
published pages: , ISSN: 1022-1824, DOI:
Selecta Mathematica to appear 2020-01-24
2017 David Jordan and Monica Vazirani
The rectangular representation of the double affine Hecke algebra via elliptic Schur-Weyl duality
published pages: , ISSN: , DOI:
2020-01-24
2018 David Ben-Zvi, Adrien Brochier, David Jordan
Integrating quantum groups over surfaces
published pages: 873-916, ISSN: 1753-8416, DOI: 10.1112/topo.12072
Journal of Topology 11/4 2020-01-24
2017 David Jordan and Noah White
The center of the reflection equation algebra via quantum minors
published pages: , ISSN: , DOI:
2020-01-24
2018 Yuri Berest, Peter Samuelson
Affine cubic surfaces and character varieties of knots
published pages: 644-690, ISSN: 0021-8693, DOI: 10.1016/j.jalgebra.2017.11.015
Journal of Algebra 500 2020-01-24
2017 Andrea Appel, Valerio Toledano-Laredo
Uniqueness of quasi-Coxeter structures on Kac-Moody algebras
published pages: , ISSN: , DOI:
2020-01-24
2018 David Ben-Zvi, Adrien Brochier, David Jordan
Quantum character varieties and braided module categories
published pages: , ISSN: 1022-1824, DOI: 10.1007/s00029-018-0426-y
Selecta Mathematica 2020-01-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUANTGEOMLANGTFT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUANTGEOMLANGTFT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

OAlipotherapy (2018)

Long-retention liposomic drug-delivery for intra-articular osteoarthritis therapy

Read More  

AST (2019)

Automatic System Testing

Read More