Opendata, web and dolomites

PULTAR

Delivery of PULmonary Therapeutics through TARgetted Delivery using Phononics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PULTAR project word cloud

Explore the words cloud of the PULTAR project. It provides you a very rough idea of what is the project "PULTAR" about.

wisdom    forms    selective    dalys    prototype    fibrosis    commercial    million    clinical    droplets    regions    medicines    nebulisation    team    outcomes    medicine    generally    strand    50m    precise    quality    substantial    barriers    accepted    380b    disease    therapies    closely    nebuliser    appealing    genes    cells    droplet    delivered    people    transits    anatomical    again    hypertension    healthcare    improves    enhanced    64m    patients    innovation    arterial    extremely    monodisperse    chronic    industry    obstructive    3m    according    therapeutic    reduce    mu    shown    proprietary    start    create    tissue    lung    inhalation    limitations    data    difficult    vascular    diseases    routes    efficacy    types    drug    ultrasonic    rna    treatment    treating    biologics    suffer    epithelium    lungs    sizes    cystic    respiratory    235    pulmonary    worldwide    mouse    aerosols    therapy    asthma    amount    similarly    aerosol    model    deaths    gene    gt    market   

Project "PULTAR" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF GLASGOW 

Organization address
address: UNIVERSITY AVENUE
city: GLASGOW
postcode: G12 8QQ
website: www.gla.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙791 €
 EC max contribution 149˙791 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-PoC
 Funding Scheme ERC-POC
 Starting year 2015
 Duration (year-month-day) from 2015-07-01   to  2016-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF GLASGOW UK (GLASGOW) coordinator 149˙791.00

Map

 Project objective

According to the WHO 235 million people suffer from asthma and 64M people have chronic obstructive pulmonary disease, leading to 3M deaths per year worldwide. The cost of treating patients with all forms of lung disease is ~ €380B p.a., leading to the loss of >50M DALYS. Generally, patients with such respiratory diseases are treated by inhalation of medicines within aerosols, where the therapy (including medicine or biologics used in gene therapy) can be targeted directly to the lung. The accepted wisdom is that such pulmonary delivery requires aerosol droplet sizes of between 1 and 5 μm. We have now shown that by using a new ultrasonic technology, we can create monodisperse aerosol droplets, which could be used for therapeutic delivery of medicines, genes and RNA to specific regions in the lungs. In one strand of the work we aim to demonstrate that this precise nebulisation technology improves the efficacy of treatment through enhanced drug uptake. In a second strand, we will demonstrate selective targeting of different tissue types in the lungs. For example, the epithelium in cystic fibrosis patients is currently extremely difficult to access leading to limitations in the amount and quality of data obtained for pre-clinical and clinical gene therapies. Similarly, targeting vascular cells is an appealing treatment for patients with pulmonary arterial hypertension, although, again, effective delivery necessitates that the therapeutic system transits defined and substantial anatomical barriers. The overall aim is to demonstrate that this new technology can define routes to new therapies, improve clinical outcomes and reduce healthcare costs. To achieve this we will develop a prototype nebuliser based upon proprietary technology and show that different medicines and gene therapies can be delivered effectively to the lungs of a model mouse. We will also start to build a commercial team and work closely with industry to deliver impact and innovation to the market.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PULTAR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PULTAR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More