Opendata, web and dolomites

SUN4GREEN

MAXIMISING SUNLIGHT RESOURCES FOR COST, ENERGY AND YIELD EFFICIENT GREENHOUSES

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SUN4GREEN project word cloud

Explore the words cloud of the SUN4GREEN project. It provides you a very rough idea of what is the project "SUN4GREEN" about.

white    room    foil    sunlight    light    consequently    size    colour    micro    dual    sun4green    semi    ghs    structures    supply    performance    reducing    electricity    fossil    directs    reduce    adding    hardness    prices    pv    either    benefits    nets    crop    covered    dependant    agriculture    energy    negative    performed    spain    sources    climate    growers    panels    incidence    critical    attempts    depending    dominantly    placed    regards    greenhouse    fruit    co2    turned    sell    significantly    tunnels    cooling    edibles    season    effect    savings    dependence    harvesting    fuels    intensive    washed    direct    underperform    sun    conventional    gh    maintenance    national    optimal    excess    temperature    italy    summer    smart    grid    yields    plastic    shaded    mainly    crops    positioning    25    temperatures    seasonal    receive    positioned    heating    transparent    adaptable    roof    surplus    compromised    south    obtain    protected    maximum    ing    75    revolutionary    screens   

Project "SUN4GREEN" data sheet

The following table provides information about the project.

Coordinator
SUNBOOST LTD 

Organization address
address: BIZUR YEHOSHUA 33
city: JERUSALEM
postcode: 9640028
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Project website http://www.sunboost-ltd.net www.rufepa.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.3. (SOCIETAL CHALLENGES - Secure, clean and efficient energy)
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2015
 Funding Scheme SME-1
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2015-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SUNBOOST LTD IL (JERUSALEM) coordinator 50˙000.00
2    RUFEPA TECNOAGRO, S.L. ES (TORRE PACHECO) participant 0.00

Map

 Project objective

GHs are dominantly plastic foil covered structures and tunnels targeted to intensive and protected crop production. The maintenance of optimal temperatures and optimal light incidence is critical for high crop yields. In summer, GHs are typically white washed or shaded by nets or by screens, in order to avoid excess temperature in the GH. Standing out, this sunlight surplus can be turned into electricity by adding PV panels, which can supply electricity to the national grid and/or supply the required energy for a heating/cooling system for the optimal control of the GH micro-climate. However, previous attempts of dual harvesting, which have been performed mainly in Italy and Spain, used conventional PV panels or semi transparent PV panels that were positioned to receive maximum sunlight on the south facing roof of GHs and significantly shaded crops all year around, resulting in a significant a negative effect, not only with regards to high crop yields loss, up to 25% but also to negative effects on edibles and fruit size, hardness and colour, which reduce sell prices of affected crops. On the other hand, If PV panels would have been placed in other positioning then, PV harvesting would underperform and consequently PV yields would be reduced. SUN4GREEN new smart design directs light either into the greenhouse or to the PV panels depending on the season need. What makes SUN4GREEN different and revolutionary is that its performance is season dependant and is adapted to GH characteristics. Its design allows growers having real dual sun and crop harvesting targeted to obtain benefits from both sources, which is not possible with simple, direct PV technology implementation, not adaptable to seasonal agriculture requirements and where thus, agriculture was compromised to make room for PV electricity production. In addition, we achieve up to 75% CO2 savings by reducing dependence on fossil fuels.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUN4GREEN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SUN4GREEN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.3.;H2020-EU.2.3.1.)

EcoMultiCloud (2015)

Hierarchical Approach for Green Workload Management in Distributed Data Centers reducing energy bill and carbon footprint

Read More  

ECHYNOXE SILICA (2015)

Innovative long range daylighting system

Read More  

CargoMill (2015)

The CARGOMIL, an innovative self propelled all terrain vehicle for mobilising “where and when the biomass is”.

Read More