Opendata, web and dolomites

SUN4GREEN

MAXIMISING SUNLIGHT RESOURCES FOR COST, ENERGY AND YIELD EFFICIENT GREENHOUSES

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SUN4GREEN project word cloud

Explore the words cloud of the SUN4GREEN project. It provides you a very rough idea of what is the project "SUN4GREEN" about.

season    seasonal    temperature    crop    effect    optimal    dependence    fruit    roof    maximum    washed    conventional    positioning    growers    panels    reducing    room    climate    size    fuels    excess    south    25    sunlight    negative    crops    sun    sell    sources    gh    dual    dominantly    national    fossil    white    75    mainly    semi    cooling    foil    heating    compromised    agriculture    positioned    screens    either    savings    grid    harvesting    performed    reduce    plastic    intensive    yields    supply    summer    italy    covered    surplus    energy    significantly    transparent    micro    direct    maintenance    turned    performance    placed    attempts    ing    prices    co2    hardness    adaptable    consequently    adding    spain    shaded    receive    benefits    obtain    pv    light    greenhouse    protected    smart    colour    dependant    revolutionary    critical    regards    ghs    structures    directs    edibles    underperform    electricity    temperatures    tunnels    nets    depending    sun4green    incidence   

Project "SUN4GREEN" data sheet

The following table provides information about the project.

Coordinator
SUNBOOST LTD 

Organization address
address: BIZUR YEHOSHUA 33
city: JERUSALEM
postcode: 9640028
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Project website http://www.sunboost-ltd.net www.rufepa.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.3. (SOCIETAL CHALLENGES - Secure, clean and efficient energy)
2. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2015
 Funding Scheme SME-1
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2015-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SUNBOOST LTD IL (JERUSALEM) coordinator 50˙000.00
2    RUFEPA TECNOAGRO, S.L. ES (TORRE PACHECO) participant 0.00

Map

 Project objective

GHs are dominantly plastic foil covered structures and tunnels targeted to intensive and protected crop production. The maintenance of optimal temperatures and optimal light incidence is critical for high crop yields. In summer, GHs are typically white washed or shaded by nets or by screens, in order to avoid excess temperature in the GH. Standing out, this sunlight surplus can be turned into electricity by adding PV panels, which can supply electricity to the national grid and/or supply the required energy for a heating/cooling system for the optimal control of the GH micro-climate. However, previous attempts of dual harvesting, which have been performed mainly in Italy and Spain, used conventional PV panels or semi transparent PV panels that were positioned to receive maximum sunlight on the south facing roof of GHs and significantly shaded crops all year around, resulting in a significant a negative effect, not only with regards to high crop yields loss, up to 25% but also to negative effects on edibles and fruit size, hardness and colour, which reduce sell prices of affected crops. On the other hand, If PV panels would have been placed in other positioning then, PV harvesting would underperform and consequently PV yields would be reduced. SUN4GREEN new smart design directs light either into the greenhouse or to the PV panels depending on the season need. What makes SUN4GREEN different and revolutionary is that its performance is season dependant and is adapted to GH characteristics. Its design allows growers having real dual sun and crop harvesting targeted to obtain benefits from both sources, which is not possible with simple, direct PV technology implementation, not adaptable to seasonal agriculture requirements and where thus, agriculture was compromised to make room for PV electricity production. In addition, we achieve up to 75% CO2 savings by reducing dependence on fossil fuels.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUN4GREEN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SUN4GREEN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.3.;H2020-EU.2.3.1.)

HELITE (2016)

High precision and performance heliostat for variable geometry fields of Thermosolar Plants

Read More  

iDriver (2015)

iDriver

Read More  

EcoMultiCloud (2015)

Hierarchical Approach for Green Workload Management in Distributed Data Centers reducing energy bill and carbon footprint

Read More