Opendata, web and dolomites

SMART DESIGN SIGNED

Spin-orbit mechanism in adaptive magnetization-reversal techniques, for magnetic memory design

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SMART DESIGN project word cloud

Explore the words cloud of the SMART DESIGN project. It provides you a very rough idea of what is the project "SMART DESIGN" about.

tool    solution    magnetic    geometry    playground    building    exerted    lack    origin    plane    dependence    ultimate    list    techniques    fundamental    though    materials    neighbouring    momentum    torque    resolved    phenomenon    injection    fulfilled    microscope    memories    discovery    instead    mechanisms    ram    modulate    plan    suffers    liberty    temporal    unlike    serve    random    questions    decouples    crystal    mram    switching    flexibility    structure    local    near    disconnection    write    compared    successful    tightly    angular    optical    transfer    objects    difference    writing    time    mastering    spin    schemes    demand    transferring    central    magnetization    innate    orbit    stt    sot    reversal    spatial    resolution    separately    shaping    dynamics    shaped    memory    layer    reading    advantage    read    basic    single    magneto    broad    begin    composing    shape    volatile    explore    singularity    advantages    lattice    pillar    trilayer    blocks    tackling   

Project "SMART DESIGN" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙476˙000 €
 EC max contribution 1˙476˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-STG
 Funding Scheme ERC-STG
 Starting year 2015
 Duration (year-month-day) from 2015-10-01   to  2020-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙476˙000.00

Map

 Project objective

Compared to existing Random Access Memories, the Magnetic RAM (MRAM) has the advantage of being non-volatile. Though the basic requirements for reading and writing a single memory element are fulfilled, the present approach based on Spin Transfer Torque (STT) suffers from an innate lack of flexibility. The solution that I propose is based on the discovery of a novel phenomenon, where instead of transferring spin angular momentum from a neighbouring layer, magnetization reversal is achieved by angular momentum transfer directly from the crystal lattice. There is a long list of advantages that this novel approach has compared to STT, but the goal of this project is to focus only on their most generic difference: flexibility. The singularity of spin-orbit torque is that the in-plane current injection geometry decouples the “read” and “write” mechanisms. The disconnection is essential, as unlike STT where the pillar shape of the magnetic trilayer sets the current path, in the case of SOT the composing elements may be shaped separately. The liberty of shaping the current distribution allows to spatially modulate the torque exerted on the local magnetization. The central goal of my project is to explore the new magnetization dynamics, specific to the Spin-Orbit Torque (SOT) geometry, and design novel magnetization switching schemes. I will begin by tackling the fundamental questions about the origin of SOT and try to control it by mastering its dependence on the layer structure. Materials with on-demand SOT will serve as playground for the testing of a broad range of magnetization reversal techniques. The most successful among them will become the building-blocks of complex magnetic objects whose switching behaviour is tightly related to their shape. To study their magnetization dynamics I plan to build a time-resolved near-field magneto-optical microscope, a unique tool for the ultimate spatial and temporal resolution.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SMART DESIGN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SMART DESIGN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More