Opendata, web and dolomites

miRNA in Immunity TERMINATED

Testing the role of miRNA-mediated non-cell autonomous gene regulation in type-2 immunity

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "miRNA in Immunity" data sheet

The following table provides information about the project.

Coordinator
THE FRANCIS CRICK INSTITUTE LIMITED 

Organization address
address: 1 MIDLAND ROAD
city: LONDON
postcode: NW1 1AT
website: www.crick.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙762˙510 €
 EC max contribution 1˙762˙510 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-CoG
 Funding Scheme ERC-COG
 Starting year 2015
 Duration (year-month-day) from 2015-08-01   to  2020-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE FRANCIS CRICK INSTITUTE LIMITED UK (LONDON) coordinator 1˙762˙510.00

Map

 Project objective

MicroRNAs (miRNAs) can be transferred between cells, representing an exciting new dimension to intercellular communication, referred to as non-cell-autonomous gene regulation. We recently identified that distinct miRNAs are packaged and exported from TREG cells and delivered directly to TH1 cells, suppressing T cell-mediated disease. Different T cell populations express different miRNAs and release a distinctive set of extracellular miRNAs. In this proposal we will identify whether the transfer of miRNAs between cells contributes to T cell development, T cell differentiation and TH2-mediated allergy and anti-helminth immunity. miRNA-mediated gene silencing requires one of four catalytically active Argonaut (Ago) proteins to regulate gene expression. To investigate miRNA transport between cells, we have generated novel mice with miRNA-deficient T cells that can (Dicer–/–) or cannot (Dicer–/–Ago-1,-3,-4–/– Ago-2fl/fl) respond to exogenous miRNAs. Using these novel mice we will identify which Ago protein(s) specific miRNAs associate with and which Ago proteins are required for miRNA-mediated gene regulation in T cells. TH2 cells express unique miRNAs, which can be found within TH2 cells and in extracellular vesicles released from TH2 cells. We have generated several new TH2-associated miRNA-deficient mice to investigate the cell intrinsic (cell-autonomous) and extrinsic (non-cell-autonomous) role of these miRNAs in TH2-mediated allergy and anti-helminth immunity. Studies in plants and worms have identified various mechanisms of RNA transfer between cells, involving cell-contact dependent and independent mechanisms. We will translate these observations into mammalian systems and identify the mechanisms of miRNA transfer. Results from this work will identify novel miRNA-mediated pathways and incentivise state-of-the-art approaches for novel therapeutic intervention to treat inflammatory diseases.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MIRNA IN IMMUNITY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MIRNA IN IMMUNITY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

MajoranasAreReal (2019)

Search for mechanisms to control chiral Majorana modes in superconductors

Read More  

MOCHA (2019)

Understanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts

Read More