Opendata, web and dolomites

CARB-City SIGNED

Physico-Chemistry of Carbonaceous Aerosol Pollution in Evolving Cities

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CARB-City" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙727˙008 €
 EC max contribution 1˙727˙008 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙727˙008.00

Map

 Project objective

Carbonaceous aerosols (organic and black carbon) remain a major unresolved issue in atmospheric science, especially in urban centers, where they are one of the dominant aerosol constituents and among most toxic to human health. The challenge is twofold: first, our understanding of the sources, sinks and physico-chemical properties of the complex mixture of carbonaceous species is still incomplete; and second, the representation of urban heterogeneities in air quality models is inadequate as they are designed for regional applications. The CARB-City project proposes the development of an innovative modeling framework that will address both issues by combining molecular-level chemical constraints and city-scale modeling to achieve the following objectives: (WP1) to develop and apply new chemical parameterizations, constrained by an explicit chemical model, for carbonaceous aerosol formation from urban precursors, and (WP2) to examine whether urban heterogeneities in sources and mixing can enhance non-linearities in chemistry of carbonaceous compounds and modify their predicted composition. The new modeling framework will then be applied (WP3) to quantify the contribution of traditional and emerging urban aerosol precursor sources to chemistry and toxicity of carbonaceous aerosols; and (WP4) to assess the effectiveness of greener-city strategies in removing aerosol pollutants. This work will enhance fundamental scientific understanding as to how key physico-chemical processes control the lifecycle of carbonaceous aerosols in cities, and will improve the predictability of air quality models in terms of composition and toxicity of urban aerosols, and their sensitivity to changes in energy and land use that cities are currently experiencing. The modeling framework will have the required chemical and spatial resolution for assessing human exposure to urban aerosols. This will allow policy makers to optimize urban emission reductions and sustainable urban development.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CARB-CITY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CARB-CITY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More  

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More