Opendata, web and dolomites

ARRAY SEQ

Array-tagged single cell gene expression by parallel linear RNA amplification and sequencing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ARRAY SEQ" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 150˙000 €
 EC max contribution 150˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-PoC
 Funding Scheme ERC-POC
 Starting year 2015
 Duration (year-month-day) from 2015-09-01   to  2017-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 150˙000.00

Map

 Project objective

In many biomedical research and clinical applications it would be tremendously useful to know the gene expression profile of each and every cell in a sample, be it a blood sample or tumor. At present, the most advanced single-cell technologies are limited to a few thousand cells by a laborious and expensive approach. We have invented a method allowing the determination of the transcriptomes of millions of cells in parallel, using array-based technique for tagging single cells. The protocol combines our previously published protocol for single cell transcriptomics – CEL-Seq – with a new membrane based system for capturing single cells and a DNA microarray for differentially tagging each cell in the membrane. If further developed into a commercial platform, our method could have tremendous impact on clinical and research transcriptomics. Our method requires no expensive equipment, low amounts of reagents and little hands-on, making it unlike any available protocol for single cell analysis. Our method also has great versatility as it can be used for analyzing up to a million cells, but can also be easily scaled down to several hundreds, promising to make it the state of the art protocol for any lab interested in single cell biology. Our method thus represents a game-changer because it completely reinvents the scale under which cells can be examined – affordably and without a need for expensive instruments – by at least three orders of magnitude. The aim of this project is to establish a user-friendly platform for our method that could be commercially available in the coming years. The developed platform will facilitate a large-scale ability to query cells; the breadth of possible research and personal medicine applications is unimaginable at present.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ARRAY SEQ" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ARRAY SEQ" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More