Opendata, web and dolomites

BIO-ORIGAMI SIGNED

Meta-biomaterials: 3D printing meets Origami

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BIO-ORIGAMI project word cloud

Explore the words cloud of the BIO-ORIGAMI project. It provides you a very rough idea of what is the project "BIO-ORIGAMI" about.

animal    groundbreaking    cell    material    flat    stem    permeability    unprecedented    diffusivity    mass    combination    transport    surface    instability    paper    decorated    crease    decorate    halfway    self    solving    techniques    owing    nanometers    folding    combining    unusual    mechanical    added    ancient    behavior    printed    first    geometrical    assays    structure    differentiation    nano    deadlock    create    knows    patterns    materials    joints    fold    creates    japanese    extraordinary    gives    negative    rate    3d    surfaces    designed    compression    preferable    dimension    class    sheet    curvatures    structures    rare    cells    nanolithography    desired    adding    meta    stiffness    origami    models    manufactured    few    optimize    sheets    distributions    tissue    regeneration    shapes    nature    extra    oxygen    bone    biological    communicate    nutrients    biomaterials    introduces    loads    thickness    subjected    precisely    printing    culture    direct    vitro   

Project "BIO-ORIGAMI" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT DELFT 

Organization address
address: STEVINWEG 1
city: DELFT
postcode: 2628 CN
website: www.tudelft.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙499˙600 €
 EC max contribution 1˙499˙600 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) coordinator 1˙499˙600.00

Map

 Project objective

Meta-materials, best known for their extraordinary properties (e.g. negative stiffness), are halfway from both materials and structures: their unusual properties are direct results of their complex 3D structures. This project introduces a new class of meta-materials called meta-biomaterials. Meta-biomaterials go beyond meta-materials by adding an extra dimension to the complex 3D structure, i.e. complex and precisely controlled surface nano-patterns. The 3D structure gives rise to unprecedented or rare combination of mechanical (e.g. stiffness), mass transport (e.g. permeability, diffusivity), and biological (e.g. tissue regeneration rate) properties. Those properties optimize the distribution of mechanical loads and the transport of nutrients and oxygen while providing geometrical shapes preferable for tissue regeneration (e.g. higher curvatures). Surface nano-patterns communicate with (stem) cells, control their differentiation behavior, and enhance tissue regeneration. There is one important problem: meta-biomaterials cannot be manufactured with current technology. 3D printing can create complex shapes while nanolithography creates complex surface nano-patterns down to a few nanometers but only on flat surfaces. There is, however, no way of combining complex shapes with complex surface nano-patterns. The groundbreaking nature of this project is in solving that deadlock using the Origami concept (the ancient Japanese art of paper folding). In this approach, I first decorate flat 3D-printed sheets with nano-patterns. Then, I apply Origami techniques to fold the decorated flat sheet and create complex 3D shapes. The sheet knows how to self-fold to the desired structure when subjected to compression, owing to pre-designed joints, crease patterns, and thickness/material distributions that control its mechanical instability. I will demonstrate the added value of meta-biomaterials in improving bone tissue regeneration using in vitro cell culture assays and animal models

 Publications

year authors and title journal last update
List of publications.
2017 Teunis van Manen, Shahram Janbaz, Amir A. Zadpoor
Programming 2D/3D shape-shifting with hobbyist 3D printers
published pages: , ISSN: 2051-6347, DOI: 10.1039/C7MH00269F
Mater. Horiz. 2019-07-08
2018 Sebastien J.P. Callens, Amir A. Zadpoor
From flat sheets to curved geometries: Origami and kirigami approaches
published pages: 241-264, ISSN: 1369-7021, DOI: 10.1016/j.mattod.2017.10.004
Materials Today 21/3 2019-04-01
2018 Teunis van Manen, Shahram Janbaz, Amir A. Zadpoor
Programming the shape-shifting of flat soft matter
published pages: 144-163, ISSN: 1369-7021, DOI: 10.1016/j.mattod.2017.08.026
Materials Today 21/2 2019-04-01
2017 Shahram Janbaz, Niels Noordzij, Dwisetya S. Widyaratih, Cornelis W. Hagen, Lidy E. Fratila-Apachitei, Amir A. Zadpoor
Origami lattices with free-form surface ornaments
published pages: eaao1595, ISSN: 2375-2548, DOI: 10.1126/sciadv.aao1595
Science Advances 3/11 2019-04-01

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIO-ORIGAMI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIO-ORIGAMI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More