UTHOTP

Understanding the Hardness of Theorem Proving

 Coordinatore KUNGLIGA TEKNISKA HOEGSKOLAN 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Sweden [SE]
 Totale costo 1˙460˙000 €
 EC contributo 1˙460˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-07-01   -   2017-06-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    KUNGLIGA TEKNISKA HOEGSKOLAN

 Organization address address: Valhallavaegen 79
city: STOCKHOLM
postcode: 10044

contact info
Titolo: Dr.
Nome: Karl Jakob
Cognome: Nordström
Email: send email
Telefono: +46 70 742 21 98
Fax: +46 8 790 09 30

SE (STOCKHOLM) hostInstitution 1˙460˙000.00
2    KUNGLIGA TEKNISKA HOEGSKOLAN

 Organization address address: Valhallavaegen 79
city: STOCKHOLM
postcode: 10044

contact info
Titolo: Ms.
Nome: Harriett
Cognome: Johansson
Email: send email
Telefono: +46 8 790 78 99
Fax: +46 8 790 09 30

SE (STOCKHOLM) hostInstitution 1˙460˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

mathematics    computational    solvers    explore    sat    studying    theoretical    proving    logic    models    problem    solving    proof    science    formulas    computer    variables   

 Obiettivo del progetto (Objective)

'This project aims to explore the fundamental question in computer science and mathematics regarding what computational problems can feasibly be solved on a computer. More specifically, we want to study algorithms for proving logic formulas as well as impossibility results for this problem.

Proving formulas in propositional logic is a problem of immense importance both theoretically and practically. On the one hand, this computational task is believed to be intractable in general, and deciding whether this is so is one of the famous million dollar Millennium Problems (the P vs NP problem). On the other hand, today automated theorem provers, or so-called SAT solvers, are routinely used to solve large-scale real-world problem instances with even millions of variables. This contrasts to that there are also known small example formulas with just hundreds of variables that cause even state-of-the-art SAT solvers to stumble.

The main objectives of our project are as follows:

(1) Understand what makes formulas hard or easy in practice by building and studying better theoretical models of the proof systems underlying SAT solvers, and testing the predictions of these models against empirical data.

(2) Gain theoretical insights into other crucial issues in SAT solving such as memory management and parallelization.

(3) Explore the possibility of basing SAT solvers on stronger proof systems than are currently being used.

(4) Clarify the theoretical limitations of such enhanced SAT solvers by studying the corresponding proof systems, which are currently poorly understood.

We see great opportunities for fruitful interplay between the fields of proof complexity and SAT solving in this area, as well as between theoretical results and practical implementations. We believe that resolving the questions posed by this project could potentially have a major impact in theoretical computer science, and in the longer term in more applied areas of computer science and mathematics.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MOLBIL (2013)

Molecular Billiards in Slow Motion

Read More  

EUROEMP (2013)

Employment in Europe

Read More  

NUMASS (2014)

Neutrinos: a different portal to new physics Beyond the Standard Model

Read More