Opendata, web and dolomites

NoCut

Detection of Chromatin Bridges during Cytokinesis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NoCut project word cloud

Explore the words cloud of the NoCut project. It provides you a very rough idea of what is the project "NoCut" about.

abscission    dstorm    organism    nocut    delaying    mechanism    vital    daughter    bridge    acting    ultra    tumours    activation    animal    completion    accomplished    division    mitosis    localization    survival    disease    correctly    significance    replication    proteins    differential    suggests    multiple    chromosome    super    constrains    cellular    defects    combining    upstream    components    cytokinesis    resolution    budding    site    signal    cell    generate    final    integrity    human    assaying    spanning    recognition    made    sensors    genome    basis    composition    condensation    monitors    molecular    unprecedented    caused    binding    basic    instability    parallel    yeast    homologs    dicentric    imaging    aurora    triggered    check    separation    characterization    fine    decatenation    thereby    detected    chromatin    cells    function    dna    putative    preserving    physical    duplication    structural    mechanisms    bridges    microscopy    signalling    model   

Project "NoCut" data sheet

The following table provides information about the project.

Coordinator
FUNDACIO CENTRE DE REGULACIO GENOMICA 

Organization address
address: CARRER DOCTOR AIGUADER 88
city: BARCELONA
postcode: 8003
website: www.crg.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website http://www.crg.eu/en/programmes-groups/coordination-cytokinesis-chromosome-segregation
 Total cost 158˙121 €
 EC max contribution 158˙121 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACIO CENTRE DE REGULACIO GENOMICA ES (BARCELONA) coordinator 158˙121.00

Map

 Project objective

Duplication of the genome and its division into two daughter cells during mitosis is vital for survival of the organism. Cells have multiple mechanisms to ensure that this process is accomplished correctly thereby preserving the integrity of the genome. The final check before cell division is made by the NoCut abscission pathway. In yeast and animal cells, this mechanism monitors completion of chromosome separation, delaying abscission when chromosome bridges spanning the division site are detected. Aurora B is essential for NoCut function, and several of its targets in this pathway have been identified. In budding yeast, NoCut can be triggered by bridges caused by defects in chromosome condensation, decatenation and replication but importantly not by dicentric chromosome bridges. This suggests that structural features of chromatin bridges are essential to generate the NoCut signal. We will investigate the molecular basis of this differential bridge recognition and the signalling pathway acting upstream of Aurora B. We will define the composition of fine and ultra-fine chromatin bridges during cytokinesis in human cells at unprecedented resolution by super-resolution microscopy using dSTORM imaging. In parallel, we will use budding yeast to investigate the role of DNA binding proteins as sensors in the NoCut pathway. We will then establish the significance of these findings in human cells, by assaying the function of putative homologs in NoCut, and their localization in chromatin bridges by dSTORM. By combining approaches in two model systems we will define both the molecular and physical constrains for NoCut activation upstream of the established components of the NoCut pathway. Chromosome instability is associated with many human tumours and in some cases with advanced disease making the detailed characterization of this pathway relevant in our understanding of both basic cellular processes and human disease.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NOCUT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NOCUT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DNANanoProbes (2019)

Design of light-harvesting DNA-nanoprobes with ratiometric signal amplification for fluorescence imaging of live cells.

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

PmNC (2019)

Policy-making of early nature conservation. The Netherlands and the United Kingdom compared, 1930-1960

Read More