Opendata, web and dolomites

GravityWaveWindow

Gravitational Self-Force and Post-Newtonian Methods for Gravitational Wave Detection

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GravityWaveWindow project word cloud

Explore the words cloud of the GravityWaveWindow project. It provides you a very rough idea of what is the project "GravityWaveWindow" about.

body    holes    gravitational    outlook    involve    opportunity    space    detectable    revealing    benefits    astrophysics    model    himself    came    accurate    detecting    radiation    secrets    fact    newtonian    back    expansion    made    theory    extend    solving    inital    window    detection    windows    universe    gw    numerical    relativity    cohesive    life    gsf    combined    bhb    brings    nr    gws    prospect    hole    experts    longstanding    bhbs    hosts    leaps    tool    opening    analytical    theories    emitted    detectors    post    world    decades    turn    cement    black    cusp    unknown    self    force    supervision    experimental    pn    detector    tests    waves    motivating    return    lease    detections    highlighting    probing    possibility    predicted    last    reaching    binaries    newly    relativists    ground    waveforms    once    age    ripples    astronomy    direct    time    einstein    gained    wave    activating    onto   

Project "GravityWaveWindow" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN 

Organization address
address: BELFIELD
city: DUBLIN
postcode: 4
website: www.ucd.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 248˙063 €
 EC max contribution 248˙063 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-GF
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2019-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE DUBLIN, NATIONAL UNIVERSITY OF IRELAND, DUBLIN IE (DUBLIN) coordinator 248˙063.00
2    UNIVERSITY OF FLORIDA US (GAINESVILLE) partner 0.00

Map

 Project objective

In the last 7 decades, leaps have been made in astrophysics in their ability to open new windows onto our universe. With every new window, came exciting new detections of the already known and as well as the unknown. We are now once more on the cusp of activating a new probing tool for revealing the secrets of our universe – gravitational wave astronomy.

Gravitational waves (GWs) are ripples in space-time that are predicted by Einstein’s theory of relativity. They are unique in the fact that they are the only type of radiation that can be emitted by black holes; allowing their direct detection. GW astronomy also brings with it the exciting opportunity for tests of general relativity as well as other gravitational theories.

Black hole binaries (BHBs) make up a large number of systems that will be detectable by both ground and space based detectors. Detection, however, requires the accurate modelling of their waveforms, which in turn requires solving the two-body problem in General Relativity. The two-body problem in general relativity is a longstanding open problem going back to work by Einstein himself. With these advances in GW detector technology, this age-old problem has been given a new lease of life and is motivating numerical, analytical and experimental relativists to work together with the prospect of opening up this new window onto our universe.

This research will investigate the 3 current methods used to model BHBs, post-Newtonian (PN), Gravitational Self-Force (GSF) and Numerical Relativity (NR). The inital phase will involve the expansion of PN and GSF, under the supervision of world-leading experts. In the return phase, this newly gained knowledge will be combined with that of the hosts experts in NR and GSF to produce a cohesive outlook of BHB modelling, both extending and highlighting the benefits and applications of the 3 methods. This will extend and further cement the possibility and far-reaching consequences of detecting GWs.

 Publications

year authors and title journal last update
List of publications.
2018 Anna Heffernan, Adrian C Ottewill, Niels Warburton, Barry Wardell, Peter Diener
Accelerated motion and the self-force in Schwarzschild spacetime
published pages: 194001, ISSN: 0264-9381, DOI: 10.1088/1361-6382/aad420
Classical and Quantum Gravity 35/19 2019-09-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GRAVITYWAVEWINDOW" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GRAVITYWAVEWINDOW" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

ACES (2019)

Antarctic Cyclones: Expression in Sea Ice

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More