Explore the words cloud of the LENA project. It provides you a very rough idea of what is the project "LENA" about.
The following table provides information about the project.
Coordinator |
COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
Organization address contact info |
Coordinator Country | France [FR] |
Project website | http://lena.cosmostat.org |
Total cost | 1˙497˙411 € |
EC max contribution | 1˙497˙411 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2015-STG |
Funding Scheme | ERC-STG |
Starting year | 2016 |
Duration (year-month-day) | from 2016-09-01 to 2021-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES | FR (PARIS 15) | coordinator | 1˙497˙411.00 |
Astrophysics has arrived to a turning point where the scientific exploitation of data requires overcoming challenging analysis issues, which mandates the development of advanced signal processing methods. In this context, sparsity and sparse signal representations have played a prominent role in astrophysics. Indeed, thanks to sparsity, an extremely clean full-sky map of the Cosmic Microwave Background (CMB) has been derived from the Planck data [Bobin14], a European space mission that observes the sky in the microwave wavelengths. This led to a noticeable breakthrough: we showed that the large-scale statistical studies of the CMB can be performed without having to mask the galactic centre anymore thanks to the achieved high quality component separation [Rassat14]. Despite the undeniable success of sparsity, standard linear signal processing approaches are too simplistic to capture the intrinsically non-linear properties of physical data. For instance, the analysis of the Planck data in polarization requires new sparse representations to finely capture the properties of polarization vector fields (e.g. rotation invariance), which cannot be tackled by linear approaches. Shifting from the linear to the non-linear signal representation paradigm is an emerging area in signal processing, which builds upon new connections with fields such as deep learning [Mallat13]. Inspired by these active and fertile connections, the LENA project will: i) study a new non-linear signal representation framework to design non-linear models that can account for the underlying physics, and ii) develop new numerical methods that can exploit these models. We will further demonstrate the impact of the developed models and algorithms to tackle data analysis challenges in the scope of the Planck mission and the European radio-interferometer LOFAR. We expect the results of the LENA project to impact astrophysical data analysis as significantly as deploying sparsity to the field has achieved.
year | authors and title | journal | last update |
---|---|---|---|
2019 |
A. Picquenot, F. Acero, J. Bobin, P. Maggi, J. Ballet, G. W. Pratt Novel method for component separation of extended sources in X-ray astronomy published pages: A139, ISSN: 0004-6361, DOI: 10.1051/0004-6361/201834933 |
Astronomy & Astrophysics 627 | 2019-10-29 |
2019 |
J. Frontera-Pons, F. Sureau, B. Moraes, J. Bobin, F. B. Abdalla Representation learning for automated spectroscopic redshift estimation published pages: A73, ISSN: 0004-6361, DOI: 10.1051/0004-6361/201834295 |
Astronomy & Astrophysics 625 | 2019-10-29 |
2019 |
Melis O. Irfan, Jérôme Bobin, Marc-Antoine Miville-Deschênes, Isabelle Grenier Determining thermal dust emission from Planck HFI data using a sparse, parametric technique published pages: A21, ISSN: 0004-6361, DOI: 10.1051/0004-6361/201834394 |
Astronomy & Astrophysics 623 | 2019-10-29 |
2018 |
Julien Fade, Estéban Perrotin, Jérôme Bobin Polarizer-free two-pixel polarimetric camera by compressive sensing published pages: B102, ISSN: 1559-128X, DOI: 10.1364/ao.57.00b102 |
Applied Optics 57/7 | 2019-07-08 |
2017 |
Melis O Irfan, Jérôme Bobin Sparse estimation of model-based diffuse thermal dust emission published pages: 5560-5574, ISSN: 0035-8711, DOI: 10.1093/mnras/stx3107 |
Monthly Notices of the Royal Astronomical Society 474/4 | 2019-07-08 |
2017 |
J. Frontera-Pons, F. Sureau, J. Bobin, E. Le Floc’h Unsupervised feature-learning for galaxy SEDs with denoising autoencoders published pages: A60, ISSN: 0004-6361, DOI: 10.1051/0004-6361/201630240 |
Astronomy & Astrophysics 603 | 2019-07-08 |
2017 |
Cécile Chenot, Jérôme Bobin Blind separation of sparse sources in the presence of outliers published pages: 233-243, ISSN: 0165-1684, DOI: 10.1016/j.sigpro.2017.03.024 |
Signal Processing 138 | 2019-07-08 |
2017 |
Ming Jiang, Jérôme Bobin, Jean-Luc Starck Joint Multichannel Deconvolution and Blind Source Separation published pages: 1997-2021, ISSN: 1936-4954, DOI: 10.1137/16M1103713 |
SIAM Journal on Imaging Sciences 10/4 | 2019-07-08 |
2017 |
Arnau Pujol, Ramin A. Skibba, Enrique Gaztañaga, Andrew Benson, Jeremy Blaizot, Richard Bower, Jorge Carretero, Francisco J. Castander, Andrea Cattaneo, Sofia A. Cora, Darren J. Croton, Weiguang Cui, Daniel Cunnama, Gabriella De Lucia, Julien E. Devriendt, Pascal J. Elahi, Andreea Font, Fabio Fontanot, Juan Garcia-Bellido, Ignacio D. Gargiulo, Violeta Gonzalez-Perez, John Helly, Bruno M. B. Henri nIFTy Cosmology: the clustering consistency of galaxy formation models published pages: , ISSN: 0035-8711, DOI: 10.1093/mnras/stx913 |
Monthly Notices of the Royal Astronomical Society | 2019-07-08 |
2019 |
Arnau Pujol, Martin Kilbinger, Florent Sureau, Jerome Bobin A highly precise shear bias estimator independent of the measured shape noise published pages: A2, ISSN: 0004-6361, DOI: 10.1051/0004-6361/201833740 |
Astronomy & Astrophysics 621 | 2019-04-18 |
2018 |
C Chang, A Pujol, B Mawdsley, D Bacon, J Elvin-Poole, P Melchior, A Kovács, B Jain, B Leistedt, T Giannantonio, A Alarcon, E Baxter, K Bechtol, M R Becker, A Benoit-Lévy, G M Bernstein, C Bonnett, M T Busha, A Carnero Rosell, F J Castander, R Cawthon, L N da Costa, C Davis, J De Vicente, J DeRose, A Drlica-Wagner, P Fosalba, M Gatti, E Gaztanaga, D Gruen, J Gschwend, W G Hartley, B Hoyle, E M Huff, M Jarvis, N Jeffrey, T Kacprzak, H Lin, N MacCrann, M A G Maia, R L C Ogando, J Prat, M M Rau, R P Rollins, A Roodman, E Rozo, E S Rykoff, S Samuroff, C Sánchez, I Sevilla-Noarbe, E Sheldon, M A Troxel, T N Varga, P Vielzeuf, V Vikram, R H Wechsler, J Zuntz, T M C Abbott, F B Abdalla, S Allam, J Annis, E Bertin, D Brooks, E Buckley-Geer, D L Burke, M Carrasco Kind, J Carretero, M Crocce, C E Cunha, C B D\'Andrea, S Desai, H T Diehl, J P Dietrich, P Doel, J Estrada, A Fausti Neto, E Fernandez, B Flaugher, J Frieman, J GarcÃa-Bellido, R A Gruendl, G Gutierrez, K Honscheid, D J James, T Jeltema, M W G Johnson, M D Johnson, S Kent, D Kirk, E Krause, K Kuehn, S Kuhlmann, O Lahav, T S Li, M Lima, M March, P Martini, F Menanteau, R Miquel, J J Mohr, E Neilsen, R C Nichol, D Petravick, A A Plazas, A K Romer, M Sako, E Sanchez, V Scarpine, M Schubnell, M Smith, R C Smith, M Soares-Santos, F Sobreira, E Suchyta, G Tarle, D Thomas, D L Tucker, A R Walker, W Wester, Y Zhang Dark Energy Survey Year 1 results: curved-sky weak lensing mass map published pages: 3165-3190, ISSN: 0035-8711, DOI: 10.1093/mnras/stx3363 |
Monthly Notices of the Royal Astronomical Society 475/3 | 2019-04-16 |
2017 |
Alexander Knebe, Frazer R Pearce, Violeta Gonzalez-Perez, Peter A Thomas, Andrew Benson, Rachel Asquith, Jeremy Blaizot, Richard Bower, Jorge Carretero, Francisco J Castander, Andrea Cattaneo, SofÃa A Cora, Darren J Croton, Weiguang Cui, Daniel Cunnama, Julien E Devriendt, Pascal J Elahi, Andreea Font, Fabio Fontanot, Ignacio D Gargiulo, John Helly, Bruno Henriques, Jaehyun Lee, Gary A Mamon, Julian Onions, Nelson D Padilla, Chris Power, Arnau Pujol, Andrés N Ruiz, Chaichalit Srisawat, Adam R H Stevens, Edouard Tollet, Cristian A Vega-MartÃnez, Sukyoung K Yi Cosmic CARNage I: on the calibration of galaxy formation models published pages: 2936-2954, ISSN: 0035-8711, DOI: 10.1093/mnras/stx3274 |
Monthly Notices of the Royal Astronomical Society 475/3 | 2019-04-16 |
2018 |
C. Kervazo, J. Bobin, C. Chenot Blind separation of a large number of sparse sources published pages: 157-165, ISSN: 0165-1684, DOI: 10.1016/j.sigpro.2018.04.006 |
Signal Processing 150 | 2019-04-16 |
2018 |
Cécile Chenot, Jérôme Bobin Blind Source Separation with Outliers in Transformed Domains published pages: 1524-1559, ISSN: 1936-4954, DOI: 10.1137/17m1133919 |
SIAM Journal on Imaging Sciences 11/2 | 2019-04-16 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LENA" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "LENA" are provided by the European Opendata Portal: CORDIS opendata.