The page lists 8 deliverables related to the research project "LUMINOUS".
title and desprition | type | last update |
---|---|---|
Consciousness: models, metrics and intervention. Issue 1T1.1 Neuroscience, Consciousness & Bits (UMI, all): We will review models of consciousness, the relevance of information integration, KAC, bistability, brain rhythms related with consciousness and other explanatory correlates, and study implications for artificial systems and other cognitive sciences. Guide experimental work: specify methods for consciousness characterization, from classical spectral measures to information transfer, connectivity and complex network EEG metrics; explore intrinsic bistability of cortical neurons as a final common pathway leading to a decreased capacity for information integration (indexed by PCI and other metrics) during loss of consciousness; propose how to test hypotheses by studying the effects of different types of perturbations (NIBS, PNS) on EEG recorded during different consciousness conditions; explore the possibility of calculating PCI, or of detecting signs of cortical bistability, starting from stimulation protocols such as tCS and PNS-mediated stimulation (i.e., oddballs, local-global paradigm, subject’s own name); define KAC metrics: 1) using auditory stimuli and study associated functional networks; 2) explore the existence of similar signals using NIBS 3) evaluate tACS perturbation on EEG to create an analogue of sensory ERP. Design techniques to detect the occurrence of perturbation-induced cortical downstates, including period-amplitude analysis of evoked slow waves, time-frequency decomposition and empirical mode decomposition; assess the impact of the downstate on causality at each single recording site by calculating phase-locking factor (Lachaux1999), and the impact of the downstate on causality across recording sites by calculating the phase-locking value (Palva2010). Pre-select appropriate EEG feedback loops in NIBS and guide the EEG feature search (WP2). Finally, organise the 2-3 day yearly project workshops for brainstorming and experimental design. As a final task in the project the experimental results obtained in WP3 will be interpreted and transformed into theoretical advances on consciousness understanding. Programme: H2020-EU.1.2.1. - Topic(s): FETOPEN-RIA-2014-2015 |
Documents, reports | 2019-05-31 |
Ethical Advisory BoardTask D4.1 Ethical Advisory Board Programme: H2020-EU.1.2.1. - Topic(s): FETOPEN-RIA-2014-2015 |
Documents, reports | 2019-05-31 |
Experimental plans. Issue 1T3.1 Anaesthesia: (UOX, STA, IFADO, UMI): Apply the concepts/protocols employed during sleep stage N1 or dreaming to subjects who are in a state of mild sedation or during the induction of general anaesthesia (MOOAS level 3) in order to probe the capacity of tCS to (1) alter the EEG features of bistability and (2) shift the level of wakefulness. Explore the relationship of the SWAS biomarker within the information theoretic and PCI approach to consciousness state. We will gather ultra high field 7T resting state fMRI paradigms using the developed EEG metrics as end-points for titration of anaesthesia. In particular we will explore the functional thalamocortical connectivity of the sub-regions of thalamus at these EEG end-points, and identify changes in connectivity induced by tCS. Slow activity is a common feature of both sleep and anaesthesia. There is also evidence that some anaesthetics satisfy the homeostatic need for sleep (Pal2011). By using a within-subject design, we will explore the commonality of these mechanisms further by using EEG recordings of sleep prior to fMRI scanning. We will investigate the effect of tCS on the developed EEG consciousness metrics to elucidate whether the proposed brain interference methods will allow the required dose for anaesthesia-induced loss of consciousness to be reduced, thus reducing the known risks of over-anaesthesia. Programme: H2020-EU.1.2.1. - Topic(s): FETOPEN-RIA-2014-2015 |
Documents, reports | 2019-05-31 |
Project website and communication materialsAll communication materials including brochures, corporate identity, and web site. Programme: H2020-EU.1.2.1. - Topic(s): FETOPEN-RIA-2014-2015 |
Other | 2019-05-31 |
Ethical Requirements. Issue 1Ethical Requirements resulting from 2nd iteration of the Ethical Screening during GA preparation. Programme: H2020-EU.1.2.1. - Topic(s): FETOPEN-RIA-2014-2015 |
Documents, reports | 2019-05-31 |
Experimental plans. Issue 2T3.1 Anaesthesia: (UOX, STA, IFADO, UMI): Apply the concepts/protocols employed during sleep stage N1 or dreaming to subjects who are in a state of mild sedation or during the induction of general anaesthesia (MOOAS level 3) in order to probe the capacity of tCS to (1) alter the EEG features of bistability and (2) shift the level of wakefulness. Explore the relationship of the SWAS biomarker within the information theoretic and PCI approach to consciousness state. We will gather ultra high field 7T resting state fMRI paradigms using the developed EEG metrics as end-points for titration of anaesthesia. In particular we will explore the functional thalamocortical connectivity of the sub-regions of thalamus at these EEG end-points, and identify changes in connectivity induced by tCS. Slow activity is a common feature of both sleep and anaesthesia. There is also evidence that some anaesthetics satisfy the homeostatic need for sleep (Pal2011). By using a within-subject design, we will explore the commonality of these mechanisms further by using EEG recordings of sleep prior to fMRI scanning. We will investigate the effect of tCS on the developed EEG consciousness metrics to elucidate whether the proposed brain interference methods will allow the required dose for anaesthesia-induced loss of consciousness to be reduced, thus reducing the known risks of over-anaesthesia. Programme: H2020-EU.1.2.1. - Topic(s): FETOPEN-RIA-2014-2015 |
Documents, reports | 2019-05-31 |
Experimental results. Issue 1T3.2 Sleep (IFADO, UMI, STA): We will explore if lucid dreaming, which is a unique consciousness model in which primary consciousness – normally present during sleep – is transferred to the secondary mode of consciousness, is associated with specific FC alterations beyond regional prefrontal changes as demonstrated recently (Voss2014). We will systematically modulate connectivity to explore if these physiological processes are causally related to lucidity and to which degree specific FC patterns (frequency bands, synchrony) contribute. Oscillatory activity and connectivity will be studied with the advanced EEG models developed in WP1, and interventional stimulation will be performed. We will monitor sleep-dependent alterations of oscillatory activity with specific relation to FC alterations depending on relaxed wakefulness, drowsiness, light sleep, deep slow wave sleep, and REM-sleep in healthy subjects. The results will provide the basis for testing causality via tCS. We will explore consciousness modulation in healthy subjects as well as in patients suffering from sleep disturbance syndromes, i.e., psychophysiological insomnia states, and narcolepsy. The results of this study will elucidate how states of consciousness can be modulated by NIBS, and whether/how pathological alterations of state changes can be counteracted [IFADO]. PCI-based experiments will be conducted on healthy sleeping subjects in order to find the optimal stimulation parameters that are effective in reducing the magnitude and the rate of occurrence of spontaneously occurring and evoked (NIBS, somatosensory, visual, auditory) cortical downstates. It will also allow testing whether tCS, by reducing bistability, may affect the level of consciousness by promoting a sleep stage transition (e.g., from sleep stage N1 to wakefulness, from dreaming to lucid dreaming). [UMI] Programme: H2020-EU.1.2.1. - Topic(s): FETOPEN-RIA-2014-2015 |
Documents, reports | 2019-05-31 |
Ethical Advisory Board Report. Issue 1Report of the external Ethical Advisory Board as requested by the Ethical check Programme: H2020-EU.1.2.1. - Topic(s): FETOPEN-RIA-2014-2015 |
Documents, reports | 2019-05-31 |