Explore the words cloud of the cenRNA project. It provides you a very rough idea of what is the project "cenRNA" about.
The following table provides information about the project.
Coordinator |
RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG
Organization address contact info |
Coordinator Country | Germany [DE] |
Total cost | 1˙896˙250 € |
EC max contribution | 1˙896˙250 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2015-CoG |
Funding Scheme | ERC-COG |
Starting year | 2016 |
Duration (year-month-day) | from 2016-07-01 to 2021-06-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | RUPRECHT-KARLS-UNIVERSITAET HEIDELBERG | DE (HEIDELBERG) | coordinator | 1˙896˙250.00 |
One of the most astonishing processes in the life of a cell is the division into two daughter cells. Such a highly organized process would presumably be regulated tightly by the underlying centromeric DNA sequence; however, the sites of chromosome attachment to the microtubule spindle are regulated by epigenetic mechanisms. The best-characterized epigenetic mark for centromeres is the histone H3-variant CENP-A, which replaces H3 in some of the nucleosomes within centromeric chromatin. Centromeres are embedded in pericentromeric heterochromatin and it has become apparent in recent years that heterochromatin is transcribed into non-coding RNAs. We have recently shown that a long non-coding RNA from pericentromeric heterochromatin of the X chromosome (SATIII) in Drosophila melanogaster localizes in trans to centromeres of all other chromosomes and is an essential component for correct loading and maintenance of CENP-A and, therefore, genome stability. Additional RNAs in Drosophila and RNAs from other species have been linked to centromeric chromatin, but their function is not understood. We propose that a complex, RNA-based epigenetic mechanism regulates centromere establishment and function.
This proposal is designed to the precise function of SATIII RNA by identifying the associated protein complexes as well as structural and post-transcriptional features of SATIII. We will evaluate the mechanisms by which SATIII functions as a heritable mark of centromeres through generations, during the developing germ line, and species separation. In parallel, we will systematically identify and characterize centromere-associated RNAs (cenRNAs) in Drosophila and human cells. We will elucidate their function in centromere biology and chromosome segregation, essentially as we have done and propose to do for SATIII. These experiments are designed to provide a detailed understanding of the essential, RNA-based epigenetic regulation of centromeres.
year | authors and title | journal | last update |
---|---|---|---|
2017 |
Linda Nötzold, Lukas Frank, Minakshi Gandhi, Maria Polycarpou-Schwarz, Matthias Groß, Manuel Gunkel, Nina Beil, Holger Erfle, Nathalie Harder, Karl Rohr, Jakob Trendel, Jeroen Krijgsveld, Thomas Longerich, Peter Schirmacher, Michael Boutros, Sylvia Erhardt, Sven Diederichs The long non-coding RNA LINC00152 is essential for cell cycle progression through mitosis in HeLa cells published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-017-02357-0 |
Scientific Reports 7/1 | 2019-10-09 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CENRNA" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "CENRNA" are provided by the European Opendata Portal: CORDIS opendata.