Opendata, web and dolomites

Trafisense

Trafisense is a real-time monitoring and early-warning service for high-risk situations in dry-type distribution and power transformers based on proprietary machine-learning technology.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Trafisense project word cloud

Explore the words cloud of the Trafisense project. It provides you a very rough idea of what is the project "Trafisense" about.

shut    farms    offshore    additional    failures    remote    initial    daily    insights    amongst    mainly    feeds    50    customers    weeks    sites    60    transformer    customer    exceptional    accidents    machine    root    automated    monitored    actions    fewer    software    experts    hundred    statistics    manifest    monitoring    disruptions    80    owners    team    indicates    time    hardware    regarding    negatives    last    original    lack    sources    generates    notify    leaving    savings    prevents    job    data    trafisense    predict    display    semiannual    dry    reduce    summary    environmental    accurately    risk    house    false    arise    installations    actionable    solution    deciphering       critical    considerable    receive    reports    onshore    datacenters    service    warnings    translates    offers    practices    electrical    power    combined    weekly    learning    standard    worse    maintenance    proprietary    days    engineers    suggesting    basic    wind    status    continuous    correspond    downtime    transformers   

Project "Trafisense" data sheet

The following table provides information about the project.

Coordinator
TRAFISENSE MONOPROSOPI IDIOTIKI KEFALAIOUCHIKI ETAIREIA 

Organization address
address: DIMOKRATIAS 24
city: VOULA
postcode: 166 73
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Greece [EL]
 Project website https://trafisense.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3.3. (SOCIETAL CHALLENGES - Secure, clean and efficient energy)
2. H2020-EU.2.1.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT))
3. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2017
 Duration (year-month-day) from 2017-02-01   to  2017-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TRAFISENSE MONOPROSOPI IDIOTIKI KEFALAIOUCHIKI ETAIREIA EL (VOULA) coordinator 50˙000.00

Map

 Project objective

Trafisense is a monitoring service for dry-type distribution and power transformers based on proprietary machine-learning technology. Currently only 5% of dry-type power transformers are monitored beyond a very basic set of properties. As a result, owners cannot predict the state of the transformers accurately and face hardware failures and downtime. Even worse, the lack of monitoring prevents identifying the original cause of failure. The last 4 years several hundred datacenters where shut down due to dry transformer failures. 50% of failures and 60% of downtime per year in wind farms correspond to electrical component failures and transformer failures are amongst the most common sources. Additional issues arise in offshore sites due to advanced monitoring requirements. Trafisense offers a combined hardware/software solution for continuous real-time monitoring of dry-type power transformers. We process data feeds from more than 10 electrical and environmental properties to identify the risk status of the hardware and notify the customer of exceptional conditions several days or weeks before they manifest. Trafisense does not just display statistics leaving the deciphering job to the customer. Our service generates detailed actionable insights leading maintenance engineers to the root problem and suggesting specific maintenance actions. In addition to the daily and weekly automated reports, our customers receive semiannual summary reports for each monitored transformer by a team of in-house experts. Initial comparison with standard maintenance practices indicates considerable savings in maintenance cost mainly in offshore installations and onshore remote or critical installations. The reduction of false negatives results to less downtime that translates to fewer disruptions in production. Our proprietary technology generates early warnings regarding high-risk hardware states and it can reduce accidents by 80%.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TRAFISENSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TRAFISENSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.3.;H2020-EU.2.1.1.;H2020-EU.2.3.1.)

Horizon (2018)

Cableway based Photovoltaic Retractable Folding Roof for Dual Usage of Spaces

Read More  

RenGen (2017)

Onsite, On-demand, Self-standing Cost Competitive Zero-Carbon Power Generation

Read More  

WTSS (2017)

Wind Turbine Support Structure

Read More